990 resultados para e-Neuroscience


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contribution of visual and nonvisual mechanisms to spatial behavior of rats in the Morris water maze was studied with a computerized infrared tracking system, which switched off the room lights when the subject entered the inner circular area of the pool with an escape platform. Naive rats trained under light-dark conditions (L-D) found the escape platform more slowly than rats trained in permanent light (L). After group members were swapped, the L-pretrained rats found under L-D conditions the same target faster and eventually approached latencies attained during L navigation. Performance of L-D-trained rats deteriorated in permanent darkness (D) but improved with continued D training. Thus L-D navigation improves gradually by procedural learning (extrapolation of the start-target azimuth into the zero-visibility zone) but remains impaired by lack of immediate visual feedback rather than by absence of the snapshot memory of the target view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized "Go" and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61-104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31-81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calbindin D-28k is a calcium-binding protein which is not expressed by dorsal root ganglion cells cultured from 6-day-old (E6) chick embryos. When soluble muscle extracts from embryos at E11, E18 or chickens 2 weeks after hatching were added immediately after seeding, dorsal root ganglia cells grown at E6 displayed neuronal subpopulations expressing calbindin immunoreactivity with time; the effect of muscle extract on the percentage of calbindin-immunoreactive dorsal root ganglia cells followed a dose-response curve. When muscle extract was added to cultures after a 3 day delay, the percentage of calbindin-expressing neurons was unchanged. The effect produced by muscle extract and, to a lesser degree, skin extract on the appearance of calbindin-positive neurons was not reproduced by brain or liver extracts while all four exerted a trophic action on cultured neurons. Hence it is assumed that muscle extract contains a factor which produces an inductive effect on the initiation of calbindin-expression by uncommitted subpopulations of sensory neurons rather than a trophic influence on the selective survival of covertly committed neuronal subpopulations. The fact that muscle extract promoted calbindin expression by dorsal root ganglia cells in neuron-enriched as well as in mixed dorsal root ganglion cell cultures indicates that the factor would act directly on sensory neurons rather than indirectly through mediation of non-neuronal cells. Since the active muscular factor was non-dialysable, heat-inactivated, trypsin-sensitive and retained by molecular filters with a cut-off of 30 K, this factor is probably a protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) is a protein capable of supporting the survival and fiber outgrowth of peripheral sensory neurons. It has been argued that histological detection of BDNF has proven difficult because of its low molecular weight and relatively low expression. In the present study we report that rapid removal of dorsal root ganglia (DRG) from the rat, followed by rapid freezing and appropriate fixation with cold acetone, preserves BDNF in situ without altering protein antigenicity. Under these conditions, specific BDNF-like immunoreactivity was detected in DRG both in vivo and in vitro. During DRG development in vivo, BDNF-like immunoreactivity (BDNF-LI) was observed only in a subset of sensory neurons. BDNF-LI was confined to small neurons, after neurons became morphologically distinct on the basis of size. BDNF-L immunoprecipitate was detected only in neuronal cells, and not in satellite or Schwann cells. While in vivo BDNF localization was restricted to small neurons, practically all neurons in DRG cell culture displayed BDNF-LI. Small or large primary afferent neurons exhibited a faint but clear BDNF-LI during the whole life span of cultures. Again, non-neuronal cells were devoid of BDNF-LI. In conclusion, in DRG in vivo, specific BDNF-LI was confined to small B sensory neurons. In contrast, all DRG sensory neurons displayed BDNF-LI in vitro. The finding that BDNF expressed in all DRG neurons in vitro but not in vivo suggests that BDNF expression may be modulated by environmental factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biochemical development of rotation-mediated aggregating brain cell cultures was studied in a serum-free chemically defined medium in the presence (complete medium) or the absence of triiodothyronine (T3). The expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP), two myelin components, was temporally dissociated in brain cell aggregating cultures grown in a complete medium. CNP increased from day 8 and reached a plateau around day 25. MBP accumulated rapidly from the third until the fourth week in culture. The total protein content increased gradually until day 25. The activity of ornithine decarboxylase (ODC) used as an index of cell growth and differentiation, showed two well-defined peaks of activity. The first peak reached a maximum at day 6 and correlated with both the highest DNA content and the peak of [3H]-thymidine incorporation. The second peak of ODC activity (from day 19 to 35) coincided with the differentiation of oligodendrocytes. These results confirm that aggregating fetal rat brain cells cultured in a serum-free chemically defined medium undergo extensive differentiation. Addition of T3 to the culture medium doubled the CNP activity by day 16. In contrast, MBP was only slightly increased by day 16, reaching at 25 and 35 days 8 to 10-fold higher values than the untreated cultures. When T3 was removed between day 16 and 25, CNP decreased almost to control values and MBP failed to accumulate. Moreover, when T3 was reintroduced into the medium (between day 25 and 35), CNP activity was restored and MBP content was partially corrected. T3 treatment produced a concentration-dependent increase in ODC activity which was observed only around day 19. The first peak of ODC activity observed at culture day 6 was independent of the presence of T3. These results obtained in brain cell cultures emphasize the direct effect of T3 on myelination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last decades of the twentieth century scholars have proposed "neurotheology" as a new subdiscipline of the neurosciences. This article presents a review and discussion of different interpretations placed on neu- rotheology, and attempts to estimate the extent to which neuroscience is a challenge and/or an opportunity for theology and (for the study of) religion. On the neuroscientific side, neurotheology can be split into a reductionist and a religionist neuroscience of religion. On the theological side, it can be split into apologetic and integrative approaches. The appraisal of these differ- ent interpretations and of the relevance of neuroscience for the study of re- ligion is conducted from three points of view: philosophy and theology, cog- nitive science, psychology of religion and sciences of religions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.