872 resultados para dual-factor model
Resumo:
The chicken represents the best-characterized animal model for B cell development in the so-called gut-associated lymphoid tissue (GALT) and the molecular processes leading to B cell receptor diversification in this species are well investigated. However, the mechanisms regulating B cell development and homeostasis in GALT species are largely unknown. Here we investigate the role played by the avian homologue of B cell-activating factor of the tumor necrosis factor family (BAFF). Flow cytometric analysis showed that the receptor for chicken B cell-activating factor of the tumor necrosis factor family (chBAFF) is expressed by mature and immature B cells. Unlike murine and human BAFF, chBAFF is primarily produced by B cells both in peripheral lymphoid organs and in the bursa of Fabricius, the chicken's unique primary lymphoid organ. In vitro and in vivo studies revealed that chBAFF is required for mature B cell survival. In addition, in vivo neutralization with a decoy receptor led to a reduction of the size and number of B cell follicles in the bursa, demonstrating that, in contrast to humans and mice, in chickens BAFF is also required for the development of immature B cells. Collectively, we show that chBAFF has phylogenetically conserved functions in mature B cell homeostasis but displays unique and thus far unknown properties in the regulation of B cell development in birds.
Resumo:
RAPPORT DE SYNTHÈSE : Pip5k3 : Pip5k3 is a kinase responsible for fleck corneal dystrophy when mutated. It is a well conserved gene that has only been characterized in human and mouse. Characterization of pip5k3 in zebrafish was necessary before using it as a model. The protein is 70 % similar to the human homologue. The full coding sequence encompasses 6303 by and presented four isoforms. They were differentially expressed during development. All the analyzed organs of the adult zebrafish expressed pip5k3. The adult eye expressed pip5k3 in the cornea, lens, ganglion cell layer (GCL), inner nuclear layer (INL) and outer limiting membrane (OLM). During development, pip5k3 was first uniformly expressed before to be restricted to the head region and to the somites. The expression of pip5k3 in the cornea of the larval eye could make possible the study of fleck corneal dystrophy on this animal. NkxS-3 : NKXS-3 is a transcription factor responsible for a new oculo-auricular syndrome in human when mutated. This recessive disorder is characterized by defects in ear lobule and multiple defects in eye, including microphthalmia and cataract. During development, the zebrafish expressed nkx5-3 in the lens, in the anterior retina and in otic vesicles. Knockdown experiments partially phenocopied the human disease. Microphthalmia and cataract were reproduced, but zebrafish showed also defects in the cartilage of the jaw associated with a microcephaly and fins abnormalities. The retinal cell differentiation was delayed, possibly linked with the delayed expression of at`h5 and crx also observed in morphants. Shh, a regulator of ath5, was normally expressed in morphant. Overexpression of nkx5-3 lead to an anophthalmia, suggesting a role at the early organogenesis of the eye. All the phenotypes observed in morphants and embryos overexpressing nkx5-3 suggest a potential involvement of the FGF and hedgehog signaling pathways.
Resumo:
AIMS: While successful termination by pacing of organized atrial tachycardias has been observed in patients, single site rapid pacing has not yet led to conclusive results for the termination of atrial fibrillation (AF). The purpose of this study was to evaluate a novel atrial septal pacing algorithm for the termination of AF in a biophysical model of the human atria. METHODS AND RESULTS: Sustained AF was generated in a model based on human magnetic resonance images and membrane kinetics. Rapid pacing was applied from the septal area following a dual-stage scheme: (i) rapid pacing for 10-30 s at pacing intervals 62-70% of AF cycle length (AFCL), (ii) slow pacing for 1.5 s at 180% AFCL, initiated by a single stimulus at 130% AFCL. Atrial fibrillation termination success rates were computed. A mean success rate for AF termination of 10.2% was obtained for rapid septal pacing only. The addition of the slow pacing phase increased this rate to 20.2%. At an optimal pacing cycle length (64% AFCL) up to 29% of AF termination was observed. CONCLUSION: The proposed septal pacing algorithm could suppress AF reentries in a more robust way than classical single site rapid pacing. Experimental studies are now needed to determine whether similar termination mechanisms and rates can be observed in animals or humans, and in which types of AF this pacing strategy might be most effective.
Resumo:
A quantitative model of water movement within the immediate vicinity of an individual root is developed and results of an experiment to validate the model are presented. The model is based on the assumption that the amount of water transpired by a plant in a certain period is replaced by an equal volume entering its root system during the same time. The model is based on the Darcy-Buckingham equation to calculate the soil water matric potential at any distance from a plant root as a function of parameters related to crop, soil and atmospheric conditions. The model output is compared against measurements of soil water depletion by rice roots monitored using γ-beam attenuation in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo(ESALQ/USP) in Piracicaba, State of São Paulo, Brazil, in 1993. The experimental results are in agreement with the output from the model. Model simulations show that a single plant root is able to withdraw water from more than 0.1 m away within a few days. We therefore can assume that root distribution is a less important factor for soil water extraction efficiency.
Resumo:
Abstract The complexity of the current business world is making corporate disclosure more and more important for information users. These users, including investors, financial analysts, and government authorities rely on the disclosed information to make their investment decisions, analyze and recommend shares, and to draft regulation policies. Moreover, the globalization of capital markets has raised difficulties for information users in understanding the differences incorporate disclosure across countries and across firms. Using a sample of 797 firms from 34 countries, this thesis advances the literature on disclosure by illustrating comprehensively the disclosure determinants originating at firm systems and national systems based on the multilevel latent variable approach. Under this approach, the overall variation associated with the firm-specific variables is decomposed into two parts, the within-country and the between-country part. Accordingly, the model estimates the latent association between corporate disclosure and information demand at two levels, the within-country and the between-country level. The results indicate that the variables originating from corporate systems are hierarchically correlated with those from the country environment. The information demand factor indicated by the number of exchanges listed and the number of analyst recommendations can significantly explain the variation of corporate disclosure for both "within" and "between" countries. The exogenous influences of firm fundamentals-firm size and performance-are exerted indirectly through the information demand factor. Specifically, if the between-country variation in firm variables is taken into account, only the variables of legal systems and economic growth keep significance in explaining the disclosure differences across countries. These findings strongly support the hypothesis that disclosure is a response to both corporate systems and national systems, but the influence of the latter on disclosure reflected significantly through that of the former. In addition, the results based on ADR (American Depositary Receipt) firms suggest that the globalization of capital markets is harmonizing the disclosure behavior of cross-boundary listed firms, but it cannot entirely eliminate the national features in disclosure and other firm-specific characteristics.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Resumo:
Our current knowledge of the general factor requirement in transcription by the three mammalian RNA polymerases is based on a small number of model promoters. Here, we present a comprehensive chromatin immunoprecipitation (ChIP)-on-chip analysis for 28 transcription factors on a large set of known and novel TATA-binding protein (TBP)-binding sites experimentally identified via ChIP cloning. A large fraction of identified TBP-binding sites is located in introns or lacks a gene/mRNA annotation and is found to direct transcription. Integrated analysis of the ChIP-on-chip data and functional studies revealed that TAF12 hitherto regarded as RNA polymerase II (RNAP II)-specific was found to be also involved in RNAP I transcription. Distinct profiles for general transcription factors and TAF-containing complexes were uncovered for RNAP II promoters located in CpG and non-CpG islands suggesting distinct transcription initiation pathways. Our study broadens the spectrum of general transcription factor function and uncovers a plethora of novel, functional TBP-binding sites in the human genome.
Resumo:
Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.
Resumo:
By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.
Resumo:
BACKGROUND: Gamma-glutamyltransferase (GGT) regulates apoptotic balance and promotes cancer progression and invasion. Higher pretherapeutic GGT serum levels have been associated with worse outcomes in various malignancies, but there are no data for renal cell carcinoma (RCC). METHODS: Pretherapeutic GGT serum levels and clinicopathological parameters were retrospectively evaluated in 921 consecutive RCC patients treated with nephrectomy at a single institution between 1998 and 2013. Gamma-glutamyltransferase was analysed as continuous and categorical variable. Associations with RCC-specific survival were assessed with Cox proportional hazards models. Discrimination was measured with the C-index. Decision-curve analysis was used to evaluate the clinical net benefit. The median postoperative follow-up was 45 months. RESULTS: Median pretherapeutic serum GGT level was 25 U l(-1). Gamma-glutamyltransferase levels increased with advancing T (P<0.001), N (P=0.006) and M stages (P<0.001), higher grades (P<0.001), and presence of tumour necrosis (P<0.001). An increase of GGT by 10 U l(-1) was associated with an increase in the risk of death from RCC by 4% (HR 1.04, P<0.001). Based on recursive partitioning-based survival tree analysis, we defined four prognostic categories of GGT: normal low (<17.5 U l(-1)), normal high (17.5 to <34.5 U l(-1)), elevated (34.5 to <181.5 U l(-1)), and highly elevated (⩾181.5 U l(-1)). In multivariable analyses that adjusted for the effect of standard features, both continuously and categorically coded GGT were independent prognostic factors. Adding GGT to a model that included standard features increased the discrimination by 0.9% to 1.8% and improved the clinical net benefit. CONCLUSIONS: Pretherapeutic serum GGT is a novel and independent prognostic factor for patients with RCC. Stratifying patients into prognostic subgroups according to GGT may be used for patient counselling, tailoring surveillance, individualised treatment planning, and clinical trial design.
Resumo:
Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.
Resumo:
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.
Resumo:
Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.
Resumo:
Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNy)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-¿) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.