732 resultados para disordered
Resumo:
Background: Regulation of sleep and sleep-related breathing resides in different brain structures. Vascular lesions can be expected to differ in their consequences on sleep depending on stroke topography. However, studies addressing the differences in sleep and sleep-related breathing depending on stroke topography are scarce. The aim of the present investigation was to compare the sleep and sleep-related breathing of patients with supratentorial versus infratentorial stroke. Methods: This study was part of the prospective multicenter study SAS-CARE-1 (Sleep-Disordered Breathing in Transient Ischemic Attack (TIA)/Ischemic Stroke and Continuous Positive Airway Pressure (CPAP) Treatment Efficacy (SAS-CARE); NCT01097967). We prospectively included 14 patients (13 male, age 66 ± 6 years) with infratentorial lesions and 14 patients (14 male, age 64 ± 7 years) with supratentorial lesions, matched for age and stroke severity. Polysomnography was recorded in all during the acute phase within 9 days after stroke onset and 3 months later. Results: During the acute phase after stroke, patients with infratentorial lesions had significantly more sleep-related breathing disorders than patients with supratentorial lesions with an apnea-hypopnea index >20 observed in 8 (57%) patients with infratentorial stroke and in only 2 (14%) patients with supratentorial stroke. Sleep-related breathing improved from the acute to the subacute phase (3 months), albeit remaining elevated in a significant proportion of subjects. Sleep parameters did not differ between the two patient groups but there was a general improvement of sleep from the acute to the subacute phase which was comparable for both patient groups. Although stroke severity was mild, recovery after 3 months was worse in patients with infratentorial stroke with 12 of 14 patients with supratentorial stroke being symptom free (NIHSS = 0), while this was the case for only 6 of 14 patients with infratentorial stroke. Conclusions: Patients with infratentorial lesions are at an increased risk for sleep-related breathing disorders, which are frequent in this group. Monitoring of sleep-related breathing is therefore especially recommended in patients with infratentorial stroke. Because of the absence of reliable differences in sleep parameters between the two patient groups, polygraphy, with reduced diagnostic costs, rather than polysomnography could be considered. The higher prevalence of sleep-related breathing disorders and the poorer recovery of patients with infratentorial lesions suggest that early treatment interventions should be considered.
Resumo:
T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment.
Resumo:
The aim of this study was (1) to examine whether childhood BMI is a significant predictor of restrained eating in preadolescents, (2) to investigate gender differences in restrained and emotional eating, and (3) to determine whether emotional problems, and body esteem were related to eating problems of preadolescents. In this longitudinal study with two measurement points, data from 428 children (50% female) were used. At time 1 (t1) children were on average 5.9 years old. BMI was assessed using objective measures. At time 2 (t2) participants were 12 years old. The adolescents and their parents completed questionnaires assessing restrained and emotional eating, body esteem, emotional problems, and BMI. Multiple regression analysis showed that restrained eating was significantly predicted by t1 BMI, by change in BMI between t1 and t2, and t2 body esteem. Emotional eating was, as expected, not predicted by t1 BMI, but associated with t2 body esteem and t2 emotional problems. Gender was not a significant predictor. The stability of BMI between childhood and preadolescence and its ability to predict restrained eating suggests that it is important to start prevention of overweight, body dissatisfaction and disordered eating at an early age
Resumo:
The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre-Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the 'finite temperature divergence'. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena.
Resumo:
We present crystal structures of the Anabaena sensory rhodopsin transducer (ASRT), a soluble cytoplasmic protein that interacts with the first structurally characterized eubacterial retinylidene photoreceptor Anabaena sensory rhodopsin (ASR). Four crystal structures of ASRT from three different spacegroups were obtained, in all of which ASRT is present as a planar (C4) tetramer, consistent with our characterization of ASRT as a tetramer in solution. The ASRT tetramer is tightly packed, with large interfaces where the well-structured beta-sandwich portion of the monomers provides the bulk of the tetramer-forming interactions, and forms a flat, stable surface on one side of the tetramer (the beta-face). Only one of our four different ASRT crystals reveals a C-terminal alpha-helix in the otherwise all-beta protein, together with a large loop from each monomer on the opposite face of the tetramer (the alpha-face), which is flexible and largely disordered in the other three crystal forms. Gel-filtration chromatography demonstrated that ASRT forms stable tetramers in solution and isothermal microcalorimetry showed that the ASRT tetramer binds to ASR with a stoichiometry of one ASRT tetramer per one ASR photoreceptor with a K(d) of 8 microM in the highest affinity measurements. Possible mechanisms for the interaction of this transducer tetramer with the ASR photoreceptor via its flexible alpha-face to mediate transduction of the light signal are discussed.
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Resumo:
Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.
Resumo:
Variations of the surface structure and composition of the Au(110) electrode during the formation/lifting of the surface reconstruction and during the surface oxidation/reduction in 0.1 M aqueous sulfuric acid were studied by cyclic voltammetry, scanning tunneling microscopy and shell-isolated nanoparticle enhanced Raman spectroscopy. Annealing of the Au(110) electrode leads to a thermally-induced reconstruction formed by intermixed (1×3) and (1×2) phases. In a 0.1 M H2SO4 solution, the decrease of the potential of the atomically smooth Au(110)-(1×1) surface leads to the formation of a range of structures with increasing surface corrugation. The electrochemical oxidation of the Au(110) surface starts by the formation of anisotropic atomic rows of gold oxide. At higher potentials we observed a disordered structure of the surface gold oxide, similar to the one found for the Au(111) surface.
Resumo:
The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.
Resumo:
We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.
Resumo:
Background Disordered interpersonal communication can be a serious problem in schizophrenia. Recent advances in computer-based measures allow reliable and objective quantification of nonverbal behavior. Research using these novel measures has shown that objective amounts of body and head movement in patients with schizophrenia during social interactions are closely related to the symptom profiles of these patients. In addition to and above mere amounts of movement, the degree of synchrony, or imitation, between patients and normal interactants may be indicative of core deficits underlying various problems in domains related to interpersonal communication, such as symptoms, social competence, and social functioning. Methods Nonverbal synchrony was assessed objectively using Motion Energy Analysis (MEA) in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia. Results Low nonverbal synchrony was indicative of symptoms, low social competence, impaired social functioning, and low self-evaluation of competence. These relationships remained largely significant when correcting for the amounts of patients‘ movement. When patients showed reduced imitation of their interactants’ movements, negative symptoms were likely to be prominent. Conversely, positive symptoms were more prominent in patients when their interaction partners’ imitation of their movements was reduced. Conclusions Nonverbal synchrony can be an objective and sensitive indicator of the severity of patients’ problems. Furthermore, quantitative analysis of nonverbal synchrony may provide novel insights into specific relationships between symptoms, cognition, and core communicative problems in schizophrenia.
Resumo:
Water-containing biological material cannot withstand the vacuum of the transmission electron microscope. The classical solution to this problem has been to dehydrate chemically fixed biological samples and then embed them in resin. During such treatment, the bacterial nucleoid is especially prone to aggregation, which affects its global shape and fine structure. Initial attempts to deal with aggregation by optimizing chemical fixation yielded contradictory results. Two decades ago, the situation improved with the introduction of freeze-substitution. This method is based on dehydration of unfixed cryo-immobilized samples at low temperature, which substantially reduces aggregation. As a result, the global shape of the nucleoid can be fairly well defined. Overall, in actively growing bacteria, the nucleoids are dispersed and "coralline" but become more confined when growth ceases. However, it is usually impossible to determine the molecular arrangement of DNA in the nucleoids of freeze-substituted bacteria because crystallization and the subsequent removal of water during substitution result in unavoidable distortions at the ultrastructural level. Recently, cryo-electron microscopy of vitreous sections has enabled the fully hydrated bacterial nucleoid to be studied close to the native state. Such studies have revealed aspects of bacterial nucleoid organization that are not preserved by freeze-substitution, including locally parallel or twisted bundles of DNA filaments, which are more frequently observed once bacterial growth has stopped, whereas in actively growing bacteria, the DNA is seen to be in a mostly disordered pattern.
Resumo:
UNLABELLED Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls: brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01780207.
Resumo:
MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life.
Resumo:
Steroidogenic factor 1 (NR5A1/SF-1) mutations usually manifest in 46,XY individuals with variable degrees of disordered sex development and in 46,XX women with ovarian insufficiency. So far, there is no genotype-phenotype correlation. The broad spectrum of phenotype with NR5A1 mutations may be due to a second hit in a gene with similar function to NR5A1/SF-1. Liver receptor homologue-1 (LRH-1/NR5A2) might be a good candidate. We performed in vitro studies for the interplay between SF-1, LRH-1 and DAX-1, expression profiles in human steroidogenic tissues, and NR5A2 genetic studies in a cohort (11 patients, 8 relatives, 11 families) harboring heterozygote NR5A1/SF-1 mutations. LRH-1 isoforms transactivate the CYP17A1 and HSD3B2 promoters similarly to SF-1 and compensate for SF-1 deficiency. DAX-1 inhibits SF-1- and LRH-1-mediated transactivation. LRH-1 is found expressed in human adult and fetal adrenals and testes. However, no NR5A2/LRH-1 mutations were detected in 14 individuals with heterozygote NR5A1/SF-1 mutations. These findings demonstrate that in vitro LRH-1 can act like SF-1 and compensate for its deficiency. Expression of LRH-1 in fetal testis suggests a role in male gonadal development. However, as we found no NR5A2/LRH-1 mutations, the 'second genetic hit' in SF-1 patients explaining the broad phenotypic variability remains elusive.