810 resultados para design based research


Relevância:

50.00% 50.00%

Publicador:

Resumo:

INTRODUCTION: In common with much of the developed world, Scotland has a severe and well established problem with overweight and obesity in childhood with recent figures demonstrating that 31% of Scottish children aged 2-15 years old were overweight including obese in 2014. This problem is more pronounced in socioeconomically disadvantaged groups and in older children across all economic groups (Scottish Health Survey, 2014). Children who are overweight or obese are at increased risk of a number of adverse health outcomes in the short term and throughout their life course (Lobstein and Jackson-Leach, 2006). The Scottish Government tasked all Scottish Health Boards with developing and delivering child healthy weight interventions to clinically overweight or obese children in an attempt to address this health problem. It is therefore imperative to deliver high quality, affordable, appropriately targeted interventions which can make a sustained impact on children’s lifestyles, setting them up for life as healthy weight adults. This research aimed to inform the design, readiness for application and Health Board suitability of an effective primary school-based curricular child healthy weight intervention. METHODS: the process involved in conceptualising a child healthy weight intervention, developing the intervention, planning for implementation and subsequent evaluation was guided by the PRECEDE-PROCEED Model (Green and Kreuter, 2005) and the Intervention Mapping protocol (Lloyd et al. 2011). RESULTS: The outputs from each stage of the development process were used to formulate a child healthy weight intervention conceptual model then develop plans for delivery and evaluation. DISCUSSION: The Fit for School conceptual model developed through this process has the potential to theoretically modify energy balance related behaviours associated with unhealthy weight gain in childhood. It also has the potential to be delivered at a Health Board scale within current organisational restrictions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.

The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.

The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).

The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.

The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.

In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Traditional engineering design methods are based on Simon's (1969) use of the concept function, and as such collectively suffer from both theoretical and practical shortcomings. Researchers in the field of affordance-based design have borrowed from ecological psychology in an attempt to address the blind spots of function-based design, developing alternative ontologies and design processes. This dissertation presents function and affordance theory as both compatible and complimentary. We first present a hybrid approach to design for technology change, followed by a reconciliation and integration of function and affordance ontologies for use in design. We explore the integration of a standard function-based design method with an affordance-based design method, and demonstrate how affordance theory can guide the early application of function-based design. Finally, we discuss the practical and philosophical ramifications of embracing affordance theory's roots in ecology and ecological psychology, and explore the insights and opportunities made possible by an ecological approach to engineering design. The primary contribution of this research is the development of an integrated ontology for describing and designing technological systems using both function- and affordance-based methods.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This document presents an Enterprise Application Integration based proposal for research outcomes and technological information management. The proposal addresses national and international science and research outcomes information management, and corresponding information systems. Information systems interoperability problems, approaches, technologies and integration tools are presented and applied to the research outcomes information management case. A business and technological perspective is provided, including the conceptual analysis and modelling, an integration solution based in a Domain-Specific Language (DSL) and the integration platform to execute the proposed solution. For illustrative purposes, the role and information system needs of a research unit is assumed as the representative case.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The industrial PhD project presented here is part of the R&D strategies of the Lipinutragen company. The innovation brought by the company concerns nutrilipidomics, i.e. the correlation between the lipid composition (in fatty acids) of the cell membrane and lipid-based nutraceuticals, especially starting from the well-known dependence of the lipid composition on the intake of essential fats, omega- 6 and omega-3 polyunsaturated fatty acids. Among the results obtained from the membrane lipidomic profiles, the case of autistic subjects is here highlighted, showing the significant deficiency of docosahexaenoic acid (DHA). The activity during the PhD was devoted to the nutrilipidomic approach. Part of the activities were devoted to scientific research in lipidomics: a) the study of lipidomic profiles in the frame of two collaboration projects: one with the group of Dr. I. Tueros at AZTI, Bilbao, regading obese population, and the other one regarding seed germination with the changes of the fatty acid profiles with the group of prof. A. Balestrazzi of the University of Parma; b) the liposome preparation for protection and lifetime prolongation of the peptide somatostatin, which was an important premise to the formulation of the DHA-containing microemulsion. The activities was also focused on the development of DHA-containing nutraceutical formulations in the form of emulsion, overcoming the difficulty of the capsule ingestion, to be administered orally. The work pointed to study the combination of active ingredients, based on the previous know-how regarding the bioavailability for the cell membrane incorporation. The ingredients of the formulation were studied and tested in vitro for the bioavailability of DHA to be incorporated in the cell membranes of different types of cultured cells. Part of this study is covered by non-disclosure agreement since it belongs to the know-how of Lipinutragen.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent research trends in computer-aided drug design have shown an increasing interest towards the implementation of advanced approaches able to deal with large amount of data. This demand arose from the awareness of the complexity of biological systems and from the availability of data provided by high-throughput technologies. As a consequence, drug research has embraced this paradigm shift exploiting approaches such as that based on networks. Indeed, the process of drug discovery can benefit from the implementation of network-based methods at different steps from target identification to drug repurposing. From this broad range of opportunities, this thesis is focused on three main topics: (i) chemical space networks (CSNs), which are designed to represent and characterize bioactive compound data sets; (ii) drug-target interactions (DTIs) prediction through a network-based algorithm that predicts missing links; (iii) COVID-19 drug research which was explored implementing COVIDrugNet, a network-based tool for COVID-19 related drugs. The main highlight emerged from this thesis is that network-based approaches can be considered useful methodologies to tackle different issues in drug research. In detail, CSNs are valuable coordinate-free, graphically accessible representations of structure-activity relationships of bioactive compounds data sets especially for medium-large libraries of molecules. DTIs prediction through the random walk with restart algorithm on heterogeneous networks can be a helpful method for target identification. COVIDrugNet is an example of the usefulness of network-based approaches for studying drugs related to a specific condition, i.e., COVID-19, and the same ‘systems-based’ approaches can be used for other diseases. To conclude, network-based tools are proving to be suitable in many applications in drug research and provide the opportunity to model and analyze diverse drug-related data sets, even large ones, also integrating different multi-domain information.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Our cities are constantly evolving, and the necessity to improve the condition and safety of the urban infrastructures is fundamental. However, on the roads, the specific needs of cyclists and pedestrians are often neglected. The Vulnerable Road Users (VRUs), among whom cyclists and pedestrians are, rarely benefit from the most innovative safety measures. Inspired by playgrounds and aiming to reduce VRUs injuries, the Impact-Absorbing Pavements (IAP) developed as novel sidewalks, and bike lanes surface layers may help decrease injuries, fatalities, and the related societal costs. To achieve this goal, the End-of-Life Tyres (ELTs) crumb rubber (CR) is used as a primary resource, bringing its elastic properties into the surface layer. The thesis is divided into five main chapters. The first concerns the formulation and the definition of a feasible mix. The second explores the mechanical and environmental properties in detail, and the ageing effect is also assessed. The third describes the modelling of the material to simulate accidents and measure the injury reduction, especially on the head. The fourth chapter is reserved for the field trial. The last gives some perspectives on the research and proposes a way to optimize and improve the data and results collected during the doctoral research. It was observed that the specimens made with cold protocol have noticeable performances and reduce the overall carbon footprint impact of this material. The material modelling and the accident simulation proved the performance of the IAP against head injuries, and the field trial confirmed the good results obtained in the laboratory for the cold-made material. Finally, the outcomes of this thesis opened many prospective to the IAP development, such as the use of a plant-based binder or recycled aggregates and gave a positive prospect of an innovative material to the urban road infrastructures.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The current issue of the resource of energy combined with the tendency to give a green footprint to our lifestyle have prompted the research to focus the attention on alternative sources with great strides in the optimization of polymeric photovoltaic devices. The research work described in this dissertation consists in the study of different semiconducting π-conjugated materials based on polythiophenes (Chapter I). In detail, the GRIM polymerization was deepened defining the synthetic conditions to obtain regioregular poly(3-alkylthiophene) (Chapter II). Since the use of symmetrical monomers functionalized with oxygen atom(s) allows to adopt easy synthesis leading to performing materials, disubstituted poly(3,4-dialkoxythiophene)s were successfully prepared, characterized and tested as photoactive materials in solar cells (Chapter III). A “green” resource of energy should be employed through sustainable devices and, for this purpose, the research work was continued on the synthesis of thiophene derivatives soluble in eco-friendly solvents. To make this possible, the photoactive layer was completely tailored starting from the electron-acceptor material. A fullerene derivative soluble in alcohols was successfully synthetized and adopted for the realization of the new devices (Chapter IV). New water/alcohol soluble electron-donor materials with different functional groups were prepared and their properties were compared (Chapter V). Once found the best ionic functional group, a new double-cable material was synthetized optimizing the surface area between the different materials (Chapter VI). Finally, other water/alcohol soluble materials were synthetized, characterized and used as cathode interlayers in eco-friendly devices (Chapter VII). In this work, all prepared materials were characterized by spectroscopy analyses, gel permeation chromatography and thermal analyses. Cyclic voltammetry, X-ray diffraction, atomic force microscopy and external quantum efficiency were used to investigate some peculiar aspects.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes the design, implementation, and experiences with AcMus, an open and integrated software platform for room acoustics research, which comprises tools for measurement, analysis, and simulation of rooms for music listening and production. Through use of affordable hardware, such as laptops, consumer audio interfaces and microphones, the software allows evaluation of relevant acoustical parameters with stable and consistent results, thus providing valuable information in the diagnosis of acoustical problems, as well as the possibility of simulating modifications in the room through analytical models. The system is open-source and based on a flexible and extensible Java plug-in framework, allowing for cross-platform portability, accessibility and experimentation, thus fostering collaboration of users, developers and researchers in the field of room acoustics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O artigo discute a adequação de aplicar a Resolução 196/961 do Conselho Nacional de Saúde - CNS, às pesquisas qualitativas em saúde, que se baseiam em paradigmas não positivistas. Nestas pesquisas, freqüentemente as decisões sobre a pesquisa são tomadas conjuntamente com a comunidade em estudo. Há a preocupação de favorecer a justiça e a mudança social. E, uma vez que a subjetividade pode ser considerada seu instrumento privilegiado, busca-se o balanço entre objetividade e subjetividade, e discute-se como superar a visão do pesquisador. Estudamos o âmbito de aplicação e a concepção de pesquisa presentes nas diretrizes éticas internacionais e brasileiras. Verificamos que elas adotam uma concepção positivista de pesquisa, que prevê: teste de hipótese, definição prévia de todos os procedimentos pelo pesquisador e neutralidade do pesquisador e do conhecimento produzido. Serão apresentadas algumas características das pesquisas qualitativas, as implicações éticas da maneira como a pesquisa qualitativa é concebida nos paradigmas não positivistas e um breve histórico dos documentos sobre ética em pesquisa. Concluímos que não é adequado analisar estas pesquisas com base nestes documentos e sugerimos a elaboração de diretrizes específicas