1000 resultados para ddc: N3983
Resumo:
Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Resumo:
Layered structures, known as micro structures in marine environments are common features of which their formation mechanisms are first reviewed. Some methods of measuring such features based on the measurements and theories are presented for the Persian Gulf. This includes determination of layers with temperature inversion (TI) associated with double diffusive convection (DDC). The relevant associated parameters are estimated from ROPME CTD data for late winter and early summer of 1992. Only in certain parts temperature inversion and DDC are observed which seem to produce layered structures. Observations show that the places with TI and DDC are mainly confined to the frontal regions where the water entering the Persian Gulf and water exiting it meet, nearly along the axis of the Gulf. TI and DDC is mainly observer in the northern bound of the front. Typical density ratio for regions with TI and DDC is 0.7 to 0.2 and the mean depth is at about 37 ± 3 m for the Persian Gulf. TI and DDC are also found in the outflow from the Persian Gulf to the Oman Gulf which is found to be at a depth of about 250 m. Horizontal addiction and reduction of solar heating seem to be the main reasons in producing layers with TI and DDC. It is also found that the regime of DDC in the Persian Gulf is more diffusive and the flow associated with intrusion layers with TI is non-isopycnal (more unstable). However for the Oman sea both diffusive and finger regime are observed and the flow is inferred to be isopycnal (more stable statically). Typical heat and salt fluxes due to DDC are found to be 6 W/m2 and 0.36 W/m2 respectively. Effective salinity diffusivity, Ks and heat diffusivity, Kr have been estimated for the places with DDC in the Persian Gulf and Oman Gulf (Ks=1.1 *10-7 m2/s, KT= 1.88*10-6 m2/s). Their values are within the values obtained by others. The buoyancy frequency for the Persian Gulf with typical mean value of 0.05s-1 is much higher than these of the free Oceans. Such large values of N (typically 0.05 s-1) indicate that processes such as tide can produce strong internal waves which may be another factor in producing layered structures. This requires separate study.
Resumo:
Rezension von: Sabine Seichter: Erziehung und Ernährung, Mit einem Vorwort von Micha Brumlik, Weinheim/Basel: Beltz/Juventa 2012 (285 S.; ISBN 978-3-7799-2807-2)
Resumo:
Background: Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. Methodology: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. Conclusions: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.
Resumo:
Rezension von: Klaus Spenlen / Susanne Kröhnert-Othman (Hrsg.): Integrationsmedium Schulbuch, Anforderungen an Islamischen Religionsunterricht und seine Bildungsmaterialien, Göttingen: V&R unipress 2012 (225 S.; ISBN 978-3-8471-0020-1)
Resumo:
Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.
Resumo:
Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (delta D) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of delta D as a robust geographical tracer of breeding origins of European bats by measuring delta D in hair of five sedentary bat species from 45 locations throughout Europe. The delta D of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking delta D of bat hair to precipitation delta D of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used delta C-13 and delta N-15 to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.
Resumo:
Werdende Elternschaft heute ist ohne das technologisch gestützte Monitoring natürlicher Wachstumsprozesse kaum noch denkbar. Von Tests und Ultraschall erhoffen sich die zukünftigen Eltern Sicherheit für ein gesundes Kind. Wird jedoch eine als schwerwiegend empfundene Diagnose wie das Down-Syndrom gestellt, finden sie sich mit der schwierigen Aufgabe konfrontiert, über Fortsetzung oder Abbruch der Schwangerschaft entscheiden zu müssen. Aus der Subjektperspektive von zehn Frauen, die einer solchen Entscheidungssituation ausgesetzt waren, analysiert die vorliegende Studie die durch die Diagnose ausgelösten psychodynamischen Prozesse und gesellschaftlichen Zugzwänge. Auf der Basis von Fallrekonstruktionen und fallübergreifenden Analysen werden konkrete Problemlagen der Betroffenen sichtbar und Kettenreaktionen im medizinischen, familiären und sozialen Umfeld aufgezeigt. Deutlich wird, wie die stetig perfektionierte Erfassung betroffener Feten dem - zunehmend privatisierten und kommerzialisierten – Medizinbetrieb eine Definitionsmacht darüber eröffnet, was lebenswert und normal ist. Die Handlungsmaxime lautet: Behinderung gilt es zu vermeiden, Normalität hat Vorrang vor Besonderheit. Mit der Analyse von Entscheidungsverläufen gegen den Selektionskonsens erschließt die Studie neue Sichtweisen auf diesen einseitig geführten Diskurs. Biographische Hintergründe der Frauen und ihre personalen und sozialen Ressourcen werden identifiziert und als Anhaltspunkte für eine professionelle Begleitung verstanden. Abgeleitet aus den Erfahrungen und Deutungsperspektiven der Betroffenen wird ein Modell der Beratung nach einer pränatalen Diagnose entworfen. Damit ist das Buch nicht nur für Professionelle aus Sonderpädagogik und Medizin, sondern auch aus Beratung und Therapie von Interesse. (DIPF/Orig.)
Resumo:
The negative effects of climate change are already evident for many of the 25 million coffee farmers across the tropics and the 90 billion dollar (US) coffee industry. The coffee berry borer (Hypothenemus hampei), the most important pest of coffee worldwide, has already benefited from the temperature rise in East Africa: increased damage to coffee crops and expansion in its distribution range have been reported. In order to anticipate threats and prioritize management actions for H. hampei we present here, maps on future distributions of H. hampei in coffee producing areas of East Africa. Using the CLIMEX model we relate present-day insect distributions to current climate and then project the fitted climatic envelopes under future scenarios A2A and B2B (for HADCM3 model). In both scenarios, the situation with H. hampei is forecasted to worsen in the current Coffea arabica producing areas of Ethiopia, the Ugandan part of the Lake Victoria and Mt. Elgon regions, Mt. Kenya and the Kenyan side of Mt. Elgon, and most of Rwanda and Burundi. The calculated hypothetical number of generations per year of H. hampei is predicted to increase in all C. arabica-producing areas from five to ten. These outcomes will have serious implications for C. arabica production and livelihoods in East Africa. We suggest that the best way to adapt to a rise of temperatures in coffee plantations could be via the introduction of shade trees in sun grown plantations. The aims of this study are to fill knowledge gaps existing in the coffee industry, and to draft an outline for the development of an adaptation strategy package for climate change on coffee production. An abstract in Spanish is provided as Abstract S1.
Resumo:
Unter dem Titel Männlichkeitskonzeptionen in geschlechterdifferenzierender Schulkultur untersuchen die Autoren den aufschlussreichen Fall eines Gymnasiums, das parallel mono- und koedukative Klassen eingeführt hat. Damit wird hier Geschlechterdifferenz explizit zu einem Ausgangspunkt der Gestaltung institutioneller Strukturen. Dies bildet sich auf der Ebene der Programmatik als das Anliegen ab, innerhalb monoedukativer Gruppen eine größere Differenzierung von Männlichkeiten und Weiblichkeiten zu ermöglichen. Auf den Ebenen der Unterrichtsplanung und der Unterrichtspraxis zeigen sich jedoch in Interviews und teilnehmenden Beobachtungen eine binäre Geschlechterunterscheidung und eine „latente Privilegierung von Männlichkeit“. Die Autor_innen begreifen dies als einen Ausdruck der tiefen Verankerung von Differenz und insbesondere Geschlechterdifferenz in der Institution Schule. (DIPF/Orig.)
Resumo:
Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.
Resumo:
Männlichkeiten stehen im Brennpunkt aktueller bildungspolitischer und erziehungswissenschaftlicher Debatten. Betrachtet man die Diskussion um Jungen als 'Bildungsverlierer', birgt bereits Männlichkeit als solche ein Benachteiligungsrisiko. Gleichzeitig gibt es Bestrebungen, dagegen anzugehen: Initiativen für mehr männliche Fachkräfte in Kindertagesstätten oder Schulen wollen durch die bloße Präsenz von Männern mehr Bildungsgerechtigkeit schaffen. Der vorliegende Band nimmt diese und andere Auffassungen von Männlichkeit kritisch in den Blick. Der Band kritisiert essentialisierende Thematisierungen von Männlichkeiten; eine unveränderliche, da, wahre' bzw. , natürliche' Sicht auf Männlichkeit hält sich nicht nur in pädagogischer Praxis und Bildungspolitik, sondern auch in Empirie und Theorie. Oftmals werden hier verkürzte Konzepte von Männlichkeit zu Grunde gelegt. Insbesondere die Verknüpfung von Männlichkeiten in pädagogischen Institutionen mit politischen Fragen von Bildung und sozialer Ungleichheit ruft Diskussionen um Geschlechterdifferenzen auf den Plan. Pädagogische Institutionen sind von besonderer Relevanz, da sie Einfluss auf (beispielsweise legitime und illegitime) Konstruktionen von Männlichkeiten nehmen. Gleichzeitig beeinflussen Männlichkeitskonstruktionen selbst die pädagogischen Institutionen. Die Autorinnen stellen sich der Herausforderung, Geschlecht theoretisch (neu) zu konzipieren und empirisch zum Gegenstand zu machen. Sie eröffnen damit neue Perspektiven auf Männlichkeit als solche. (DIPF/Verlag)
Resumo:
Background: Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. Methodology/Principal Findings: Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen-and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01). Conclusion/Significance: Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a pioneer role in researching cellular mechanics on native spider silk fibres.
Resumo:
Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35 degrees C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20-30 degrees C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32 degrees C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1 degrees C rise in thermal optimum (T(opt)), the maximum intrinsic rate of increase (r(max)) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.