999 resultados para critical velocity
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
OBJECTIVES: To investigate the effect of a change in second-hand smoke (SHS) exposure on heart rate variability (HRV) and pulse wave velocity (PWV), this study utilized a quasi-experimental setting when a smoking ban was introduced. METHODS: HRV, a quantitative marker of autonomic activity of the nervous system, and PWV, a marker of arterial stiffness, were measured in 55 non-smoking hospitality workers before and 3-12 months after a smoking ban and compared to a control group that did not experience an exposure change. SHS exposure was determined with a nicotine-specific badge and expressed as inhaled cigarette equivalents per day (CE/d). RESULTS: PWV and HRV parameters significantly changed in a dose-dependent manner in the intervention group as compared to the control group. A one CE/d decrease was associated with a 2.3 % (95 % CI 0.2-4.4; p = 0.031) higher root mean square of successive differences (RMSSD), a 5.7 % (95 % CI 0.9-10.2; p = 0.02) higher high-frequency component and a 0.72 % (95 % CI 0.40-1.05; p < 0.001) lower PWV. CONCLUSIONS: PWV and HRV significantly improved after introducing smoke-free workplaces indicating a decreased cardiovascular risk.
Resumo:
Activation of the NF-kappaB pathway in T cells is required for induction of an adaptive immune response. Hematopoietic progenitor kinase (HPK1) is an important proximal mediator of T-cell receptor (TCR)-induced NF-kappaB activation. Knock-down of HPK1 abrogates TCR-induced IKKbeta and NF-kappaB activation, whereas active HPK1 leads to increased IKKbeta activity in T cells. Yet, the precise molecular mechanism of this process remains elusive. Here, we show that HPK1-mediated NF-kappaB activation is dependent on the adaptor protein CARMA1. HPK1 interacts with CARMA1 in a TCR stimulation-dependent manner and phosphorylates the linker region of CARMA1. Interestingly, the putative HPK1 phosphorylation sites in CARMA1 are different from known PKC consensus sites. Mutations of residues S549, S551, and S552 in CARMA1 abrogated phosphorylation of a CARMA1-linker construct by HPK1 in vitro. In addition, CARMA1 S551A or S5549A/S551A point mutants failed to restore HPK1-mediated and TCR-mediated NF-kappaB activation and IL-2 expression in CARMA1-deficient T cells. Thus, we identify HPK1 as a kinase specific for CARMA1 and suggest HPK1-mediated phosphorylation of CARMA1 as an additional regulatory mechanism tuning the NF-kappaB response upon TCR stimulation.
Resumo:
Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture is introduced to explain the various long-time tails, and the simulations are compared with theoretical expressions where available.
Resumo:
In 2004, Walnut Creek was placed on the 303d list of Impaired Waters due to a low biotic index (lack of aquatic life) during IDNR stream sampling events. Sediment originating from agriculture, streambank erosion, and channelization were listed as the most likely sources impacting aquatic life. In an effort to address these concerns, a preliminary study was completed of the multi-county watershed to identify priority areas. A Watershed Development & Planning Assistance Grant was then funded by the IDALS-DSC to conduct a detailed assessment of these prioritized sub-watersheds. The impending assessment of the watershed and the stream corridor revealed ample opportunities to address gully, sheet and rill erosion while addressing in-stream water velocity issues that plagued the riparian corridor. A comprehensive plan was developed comprised of a variety of best management practices to address the identified concerns. In 2009, this plan was submitted to the WIRB Board by the East Pottawattamie and Montgomery SWCDs and $489,455 was awarded to address concerns identified during watershed assessment inquiries. Despite adverse weather conditions, which has hampered conservation construction recently, this project has held fast to pre-project goals due to the fortitude of the project sponsors and the overwhelming participation by the watershed landowners. Unfortunately, state budget shortfalls are bringing project progress to a halt. As specified in the original WIRB funding request, practice funding for Year 3 was to come from the Division of Soil Conservation’s Watershed Protection Fund (WSPF). Due to Iowa’s budgetary restraints, the Walnut Creek WSPF application, which was submitted this spring, was not funded since no new applications in the state were funded. If funded again, this grant will serve as the critical step in continuing what is destined to be a true watershed success story.
Resumo:
Background: Ethical conflicts are arising as a result of the growing complexity of clinical care, coupled with technological advances. Most studies that have developed instruments for measuring ethical conflict base their measures on the variables"frequency" and"degree of conflict". In our view, however, these variables are insufficient for explaining the root of ethical conflicts. Consequently, the present study formulates a conceptual model that also includes the variable"exposure to conflict", as well as considering six"types of ethical conflict". An instrument was then designed to measure the ethical conflicts experienced by nurses who work with critical care patients. The paper describes the development process and validation of this instrument, the Ethical Conflict in Nursing Questionnaire Critical Care Version (ECNQ-CCV). Methods: The sample comprised 205 nursing professionals from the critical care units of two hospitals in Barcelona (Spain). The ECNQ-CCV presents 19 nursing scenarios with the potential to produce ethical conflict in the critical care setting. Exposure to ethical conflict was assessed by means of the Index of Exposure to Ethical Conflict (IEEC), a specific index developed to provide a reference value for each respondent by combining the intensity and frequency of occurrence of each scenario featured in the ECNQ-CCV. Following content validity, construct validity was assessed by means of Exploratory Factor Analysis (EFA), while Cronbach"s alpha was used to evaluate the instrument"s reliability. All analyses were performed using the statistical software PASW v19. Results: Cronbach"s alpha for the ECNQ-CCV as a whole was 0.882, which is higher than the values reported for certain other related instruments. The EFA suggested a unidimensional structure, with one component accounting for 33.41% of the explained variance. Conclusions: The ECNQ-CCV is shown to a valid and reliable instrument for use in critical care units. Its structure is such that the four variables on which our model of ethical conflict is based may be studied separately or in combination. The critical care nurses in this sample present moderate levels of exposure to ethical conflict. This study represents the first evaluation of the ECNQ-CCV.
Resumo:
Background: Ethical conflicts are arising as a result of the growing complexity of clinical care, coupled with technological advances. Most studies that have developed instruments for measuring ethical conflict base their measures on the variables"frequency" and"degree of conflict". In our view, however, these variables are insufficient for explaining the root of ethical conflicts. Consequently, the present study formulates a conceptual model that also includes the variable"exposure to conflict", as well as considering six"types of ethical conflict". An instrument was then designed to measure the ethical conflicts experienced by nurses who work with critical care patients. The paper describes the development process and validation of this instrument, the Ethical Conflict in Nursing Questionnaire Critical Care Version (ECNQ-CCV). Methods: The sample comprised 205 nursing professionals from the critical care units of two hospitals in Barcelona (Spain). The ECNQ-CCV presents 19 nursing scenarios with the potential to produce ethical conflict in the critical care setting. Exposure to ethical conflict was assessed by means of the Index of Exposure to Ethical Conflict (IEEC), a specific index developed to provide a reference value for each respondent by combining the intensity and frequency of occurrence of each scenario featured in the ECNQ-CCV. Following content validity, construct validity was assessed by means of Exploratory Factor Analysis (EFA), while Cronbach"s alpha was used to evaluate the instrument"s reliability. All analyses were performed using the statistical software PASW v19. Results: Cronbach"s alpha for the ECNQ-CCV as a whole was 0.882, which is higher than the values reported for certain other related instruments. The EFA suggested a unidimensional structure, with one component accounting for 33.41% of the explained variance. Conclusions: The ECNQ-CCV is shown to a valid and reliable instrument for use in critical care units. Its structure is such that the four variables on which our model of ethical conflict is based may be studied separately or in combination. The critical care nurses in this sample present moderate levels of exposure to ethical conflict. This study represents the first evaluation of the ECNQ-CCV.
Resumo:
The main objective of this article is to assess the risk factors and the types of surface for the development of pressure ulcers (PU) on critical ill patients in an Intensive Care Unit (ICU)
Resumo:
Nerve injuries often lead to neuropathic pain syndrome. The mechanisms contributing to this syndrome involve local inflammatory responses, activation of glia cells, and changes in the plasticity of neuronal nociceptive pathways. Cannabinoid CB(2) receptors contribute to the local containment of neuropathic pain by modulating glial activation in response to nerve injury. Thus, neuropathic pain spreads in mice lacking CB(2) receptors beyond the site of nerve injury. To further investigate the mechanisms leading to the enhanced manifestation of neuropathic pain, we have established expression profiles of spinal cord tissues from wild-type and CB(2)-deficient mice after nerve injury. An enhanced interferon-gamma (IFN-gamma) response was revealed in the absence of CB(2) signaling. Immunofluorescence stainings demonstrated an IFN-gamma production by astrocytes and neurons ispilateral to the nerve injury in wild-type animals. In contrast, CB(2)-deficient mice showed neuronal and astrocytic IFN-gamma immunoreactivity also in the contralateral region, thus matching the pattern of nociceptive hypersensitivity in these animals. Experiments in BV-2 microglia cells revealed that transcriptional changes induced by IFN-gamma in two key elements for neuropathic pain development, iNOS (inducible nitric oxide synthase) and CCR2, are modulated by CB(2) receptor signaling. The most direct support for a functional involvement of IFN-gamma as a mediator of CB(2) signaling was obtained with a double knock-out mouse strain deficient in CB(2) receptors and IFN-gamma. These animals no longer show the enhanced manifestations of neuropathic pain observed in CB(2) knock-outs. These data clearly demonstrate that the CB(2) receptor-mediated control of neuropathic pain is IFN-gamma dependent.
Resumo:
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Resumo:
Velocity-density tests conducted in the laboratory involved small 4-inch diameter by 4.58-inch-long compacted soil cylinders made up of 3 differing soil types and for varying degrees of density and moisture content, the latter being varied well beyond optimum moisture values. Seventeen specimens were tested, 9 with velocity determinations made along two elements of the cylinder, 180 degrees apart, and 8 along three elements, 120 degrees apart. Seismic energy was developed by blows of a small tack hammer on a 5/8-inch diameter steel ball placed at the center of the top of the cylinder, with the detector placed successively at four points spaced 1/2-inch apart on the side of the specimen involving wave travel paths varying from 3.36 inches to 4.66 inches in length. Time intervals were measured using a model 217 micro-seismic timer in both laboratory and field measurements. Forty blows of the hammer were required for each velocity determination, which amounted to 80 blows on 9 laboratory specimens and 120 blows on the remaining 8 cylinders. Thirty-five field tests were made over the three selected soil types, all fine-grained, using a 2-foot seismic line with hammer-impact points at 6-inch intervals. The small tack hammer and 5/8-inch steel ball was, again, used to develop seismic wave energy. Generally, the densities obtained from the velocity measurements were lower than those measured in the conventional field testing. Conclusions were reached that: (1) the method does not appear to be usable for measurement of density of essentially fine-grained soils when the moisture content greatly exceeds the optimum for compaction, and (2) due to a gradual reduction in velocity upon aging, apparently because of gradual absorption of pore water into the expandable interlayer region of the clay, the seismic test should be conducted immediately after soil compaction to obtain a meaningful velocity value.
Resumo:
We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.
Resumo:
Dr. Narakas intended to study a series of 61 cases of shoulder sequelae of obstetric palsy. His vast experience would have enriched our clinical knowledge of this ailment. The authors carry on with that study to clarify his therapeutic approach and share the benefit of his experience.