773 resultados para cracking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, asphalt mixtures were produced at high temperatures (between 150°C to 180°C) and therefore often referred to as Hot Mix Asphalt (HMA). Recently, a new technology named Warm Mix Asphalt (WMA) was developed in Europe that allows HMA to be produced at a lower temperature. Over years of research efforts, a few WMA technologies were introduced including the foaming method using Aspha-min® and Advera® WMA; organic additives such as Sasobit® and Asphaltan B®; and chemical packages such as Evotherm® and Cecabase RT®. Benefits were found when lower temperatures were used to produce asphalt mixtures, especially when it comes to environmental and energy savings. Even though WMA has shown promising results in energy savings and emission reduction, however, only limited studies and laboratory tests have been conducted to date. The objectives of this project are to 1) develop a mix design framework for WMA by evaluating its mechanical properties; 2) evaluate performance of WMA containing high percentages of recycled asphalt material; and 3) evaluate the moisture sensitivity in WMA. The test results show that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. A recommended WMA mix design framework was developed as well. The WMA design framework was presented in this study to provide contractors, and government agencies successfully design WMA. Mixtures containing high RAP and RAS were studied as well and the overall results show that WMA technology allows the mixture containing high RAP content and RAS to be produced at lower temperature (up to 35°C lower) without significantly affect the performance of asphalt mixture in terms of rutting, fatigue and moisture susceptibility. Lastly, the study also found that by introducing the hydrated lime in the WMA, all mixtures modified by the hydrated lime passed the minimum requirement of 0.80. This indicated that, the moisture susceptibility of the WMA can be improved by adding the hydrated lime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bridge inspection industry has yet to utilize a rapidly growing technology that shows promise to help improve the inspection process. This thesis investigates the abilities that 3D photogrammetry is capable of providing to the bridge inspector for a number of deterioration mechanisms. The technology can provide information about the surface condition of some bridge components, primarily focusing on the surface defects of a concrete bridge which include cracking, spalling and scaling. Testing was completed using a Canon EOS 7D camera which then processed photos using AgiSoft PhotoScan to align the photos and develop models. Further processing of the models was done using ArcMap in the ArcGIS 10 program to view the digital elevation models of the concrete surface. Several experiments were completed to determine the ability of the technique for the detection of the different defects. The cracks that were able to be resolved in this study were a 1/8 inch crack at a distance of two feet above the surface. 3D photogrammetry was able to be detect a depression of 1 inch wide with 3/16 inch depth which would be sufficient to measure any scaling or spalling that would be required be the inspector. The percentage scaled or spalled was also able to be calculated from the digital elevation models in ArcMap. Different camera factors including the distance from the defects, number of photos and angle, were also investigated to see how each factor affected the capabilities. 3D photogrammetry showed great promise in the detection of scaling or spalling of the concrete bridge surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide oxidation in petroleum-based asphalt increases with increasing bioasphalt modifiers; 4) bioasphalt causes the asphaltene fractions in petroleum-based asphalt to precipitate out of the solvent maltene fractions; 5) there is no definite improvement or decline in the dynamic mix behavior of bio-modified mixes at low temperatures; 6) bio-modified asphalt mixes exhibit better rutting performance than traditional asphalt mixes; 7) bio-modified asphalt mixes have lower susceptibility to moisture damage; 8) more field compaction energy is needed to compact bio-modified mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-sorted circles, non-sorted polygons, and earth hummocks are common ground-surface features ill arctic regions. The), are caused by a variety of physical processes that Occur in permafrost regions including contraction cracking and frost heave. Here we describe the vegetation of patterned-ground forms on zonal sites at three location!: along an N-S transect through the High Arctic of Canada. We made 75 releves on patterned-ground features (circles, polygons, earth hummocks) and adjacent tundra (Interpolygon, intercircle, interhummock areas) and identified and classified the vegetation according to the Braun-Blanquet Method. Environmental factors were correlated with the vegetation data using a nonmetric multidimensional scaling ordination (NMDS). We identified eleven commnunities: (1) Puccinellia angustata-Papaver radicalum community in xeromesic non-sorted polygons of subzone A of the Circumpolar Arctic Vegetation Map; (2) Saxifraga-Parmelia omphalodes ssp. glacialis community in hydromesic interpolygon areas of subzone A; (3) Hypogymnia subobscura-Lecanora epibryon community In xeromesic non-sorted polygons of subzone B; (4) Orthotrichum speciosum-Salix arctica community In xeromesic interpolygon areas of subzone B; (5) Cochlearia groenlandica-Luzula nivalis community in hydromesic earth Mocks Of subzone B; (6) Salix arctica-Eriophorum angustifolium ssp. triste community in hygric earth hummocks of subzone 13; (7) Puccinellia angustata-Potentilla vahliana community in xeromesic non-sorted circles and bare patches of subzone Q (8) Dryas integrifolia-Carex rupestris community in xeromesic intercircle areas and vegetated patches of subzone C; (9) Braya glabella ssp. purpurascens-Dryas integrifolia community In hydromesic non-sorted circles of subzone Q (10) Dryas integrifolia-Carex aquatilis community in hydromesic intercircle areas of subzone C; and (11) Eriophorum angustifolium ssp. triste-Carex aquatilis community ill hygric intercircle areas of subzone C. The NMDS ordination displayed the vegetation types with respect to complex environmental gradients. The first axis of the ordination corresponds to a complex soil moisture gradient and the second axis corresponds to a complex geology/elevation/climate gradient. The tundra plots have a greater moss and graminoid cover than the adjacent frost-heave communities. In general, frost-heave features have greater thaw depths, more bare ground, thinner organic horizons, and lower soil moisture than the surrounding tundra. The morphology of the investigated patterned ground forms changes along the climatic gradient, with non-sorted pollygons dominating in the northernmost sites and non-sorted circles dominating, in the southern sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jakobshavns Glacier, a floating outlet glacier on the West Greenland coast, was surveyed during July 1976. The vertical displacements of targets along two profiles perpendicular to the fjord wall bounding the north margin of the glacier were analyzed to determine the effect of flexure caused by tidal oscillations within the fjord. An analysis based on the assumption that vertical displacements of the glacier reflected pure elastic bending yielded the conclusion that the effective thickness of the ice (i.e., the thickness which remained unaffected by surface and basal cracking and which behaved as a continuum) was ∼160 m 2.6 km upglacier from the calving front and ∼110 m 0.6 km from the calving front. An analysis based on the more realistic assumption that observed bending reflected elastic and viscoplastic deformation yielded the conclusion that the average effective thickness of the ice was 316 ± 74 m (∼40% of the estimated 800-m total thickness) 2.6 km from the calving front and 160 ± 48 m (∼21% of the estimated 750-m total) 0.6 km from the calving front. A constitutive relationship appropriate for hard glide during flexure was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (CTX and HiRISE) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summer-time temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively “temperate” climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of Mars is host to many regions displaying polygonal crack patterns that have been identified as potential desiccation cracks. These regions are mostly within Noachian-aged terrains and are closely associated with phyllosilicate occurrences and smectites in particular. We have built a laboratory setup that allows us to carry out desiccation experiments on Mars-analog materials in an effort to constrain the physical and chemical properties of sediments that display polygonal cracks. The setup is complemented by a pre-existing simulation chamber that enables the investigation of the spectral and photometric properties of analog materials in Mars-like conditions. The initial experiments that have been carried out show that (1) crack patterns are visible in smectite-bearing materials in varying concentrations down to similar to 10% smectite by weight, (2) chlorides, and potentially other salts, delay the onset of cracking and may even block it from occurring entirely, and (3) the polygonal patterns, while being indicative of the presence of phyllosilicates, cannot be used to differentiate between various phyllosilicate-bearing deposits. However, their size-scale and morphology yields important information regarding their thickness and the hydrological conditions at the time of formation. Furthermore, the complementary spectral measurements for some of the analog samples shows that crack patterns may develop in materials with such low concentrations of smectites that would not be expected to be identified using remote-sensing instruments. This may explain the presence of polygonal patterns on Mars in sediments that lack spectral confirmation of phyllosilicates. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper will discuss the intersection of pill mills and the under-treatment of pain, while addressing the unintended consequence that cracking down on pill mills actually has on medical professionals' treatment of legitimate pain in clinical settings. Moreover, the impact each issue has on the spectrum of related policy, regulatory issues and legislation will be analyzed while addressing the national impact on medical care. Lastly, this paper will outline a process to develop a State Model Law on this subject. This process will include suggestions for the future and how we can move forward to adequately address public safety needs and how we can attempt to mitigate the unintended impact prescription drug trafficking has had on a patient's right to appropriate pain management. This balance is achievable and this paper will address ways we can find this elusive balancing point through the development of a State Model Law. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of hummock and string-like microrelief features were made in High Arctic hydric meadows. Thermal shearing of thick bryophyte mats, and subsequent roll back during spring flooding appears to be one way in which this topography is formed. Hummocky and non-hummocky (flat) meadows show distinct floristic differences which may in part be due to observed differences in temperature, nutrient concentrations and moisture relations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other changes during ontogeny. We find that the most susceptible fraction of biogenic calcite in surface dwelling foraminifera gives the most accurate value for SST and therefore best represents primary calcite. Sequential dissolution curves can be used to correct the primary Mg/Ca ratio for clay, if necessary. However, the temporal separation of calcite from clay in FT-TRA is so complete that this correction is typically <=2%, even in clay-rich sediments. Unlike hands-on batch methods, that are difficult to reproduce exactly, flow-through lends itself to automation, providing precise replication of treatment for every sample. Our automated flow-through system can process 22 samples, two system blanks, and 48 mixed standards in <12 hours of unattended operation. FT-TRA thus represents a faster, cheaper, and better way to determine Mg/Ca ratios in foraminiferal calcite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.