971 resultados para control parameters
Resumo:
Properties relevant to the ovipositional activity and lifetime productivity of Coccidoxenoides peregrinus (Timberlake) were assessed in the laboratory, to determine the potential of this species as a biocontrol agent against the citrus mealybug, Planococcus citri (Risso). In general, this species has not performed well in orchards, except for a few localities on different continents. The mode of reproduction of C peregrinus is almost entirely thelytokous, with males produced sporadically and at low frequency. The females have both pro-ovigenic and synovigenic traits, which raises questions of the utility of this distinction. The females have a high reproductive potential with 10-20 eggs per day available within the first two days (after a short (12 h) pre-oviposition period), and 80-150 eggs per day thereafter until death at about eight days. Mean lifetime fecundity was 239.2 +/- 34.3 eggs. C peregrinus oviposits across a range of P. citri instars, but productivity relies predominantly on second instar hosts. Second stage (N2) hosts received most eggs in choice (about 52%) and no-choice (about 50%) tests. Most eggs deposited into N2 hosts (82%) reached adult stage whereas only a few of those deposited into N1 and N3 (about 5% each) developed successfully. The haemolymph of parasitised reproductive mealybugs contained granular structures and no parasitoid eggs were found 24 h after exposure to ovipositing wasps. Also, no wasps emerged from parasitised adult hosts that were kept alive. Parasitoid eggs deposited into adult hosts were presumed encapsulated and destroyed, as control mealybugs (not exposed to female wasps) had no granular structures in their haemolymph. Wasps exposed to an abundance of hosts soon started ovipositing, but only for a relatively short time each day (about 2.5 h out of a 7 h exposure). They stopped ovipositing despite eggs judged to be mature in their ovaries. The reproductive output of C peregrinus is discussed in relation to the ecological factors that could influence this output, and the implications for biocontrol are discussed. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Air Traffic Control Laboratory Simulator (ATC-lab) is a new low- and medium-fidelity task environment that simulates air traffic control. ATC-lab allows the researcher to study human performance of tasks under tightly controlled experimental conditions in a dynamic, spatial environment. The researcher can create standardized air traffic scenarios by manipulating a wide variety of parameters. These include temporal and spatial variables. There are two main versions of ATC-lab. The medium-fidelity simulator provides a simplified version of en route air traffic control, requiring participants to visually search a screen and both recognize and resolve conflicts so that adequate separation is maintained between all aircraft. The low-fidelity simulator presents pairs of aircraft in isolation, controlling the participant's focus of attention, which provides a more systematic measurement of conflict recognition and resolution performance. Preliminary studies have demonstrated that ATC-lab is a flexible tool for applied cognition research.
Resumo:
Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A sieve plate distillation column has been constructed and interfaced to a minicomputer with the necessary instrumentation for dynamic, estimation and control studies with special bearing on low-cost and noise-free instrumentation. A dynamic simulation of the column with a binary liquid system has been compiled using deterministic models that include fluid dynamics via Brambilla's equation for tray liquid holdup calculations. The simulation predictions have been tested experimentally under steady-state and transient conditions. The simulator's predictions of the tray temperatures have shown reasonably close agreement with the measured values under steady-state conditions and in the face of a step change in the feed rate. A method of extending linear filtering theory to highly nonlinear systems with very nonlinear measurement functional relationships has been proposed and tested by simulation on binary distillation. The simulation results have proved that the proposed methodology can overcome the typical instability problems associated with the Kalman filters. Three extended Kalman filters have been formulated and tested by simulation. The filters have been used to refine a much simplified model sequentially and to estimate parameters such as the unmeasured feed composition using information from the column simulation. It is first assumed that corrupted tray composition measurements are made available to the filter and then corrupted tray temperature measurements are accessed instead. The simulation results have demonstrated the powerful capability of the Kalman filters to overcome the typical hardware problems associated with the operation of on-line analyzers in relation to distillation dynamics and control by, in effect, replacirig them. A method of implementing estimator-aided feedforward (EAFF) control schemes has been proposed and tested by simulation on binary distillation. The results have shown that the EAFF scheme provides much better control and energy conservation than the conventional feedback temperature control in the face of a sustained step change in the feed rate or multiple changes in the feed rate, composition and temperature. Further extensions of this work are recommended as regards simulation, estimation and EAFF control.
Resumo:
Our understanding of early spatial vision owes much to contrast masking and summation paradigms. In particular, the deep region of facilitation at low mask contrasts is thought to indicate a rapidly accelerating contrast transducer (eg a square-law or greater). In experiment 1, we tapped an early stage of this process by measuring monocular and binocular thresholds for patches of 1 cycle deg-1 sine-wave grating. Threshold ratios were around 1.7, implying a nearly linear transducer with an exponent around 1.3. With this form of transducer, two previous models (Legge, 1984 Vision Research 24 385 - 394; Meese et al, 2004 Perception 33 Supplement, 41) failed to fit the monocular, binocular, and dichoptic masking functions measured in experiment 2. However, a new model with two-stages of divisive gain control fits the data very well. Stage 1 incorporates nearly linear monocular transducers (to account for the high level of binocular summation and slight dichoptic facilitation), and monocular and interocular suppression (to fit the profound 42 Oral presentations: Spatial vision Thursday dichoptic masking). Stage 2 incorporates steeply accelerating transduction (to fit the deep regions of monocular and binocular facilitation), and binocular summation and suppression (to fit the monocular and binocular masking). With all model parameters fixed from the discrimination thresholds, we examined the slopes of the psychometric functions. The monocular and binocular slopes were steep (Weibull ߘ3-4) at very low mask contrasts and shallow (ߘ1.2) at all higher contrasts, as predicted by all three models. The dichoptic slopes were steep (ߘ3-4) at very low contrasts, and very steep (ß>5.5) at high contrasts (confirming Meese et al, loco cit.). A crucial new result was that intermediate dichoptic mask contrasts produced shallow slopes (ߘ2). Only the two-stage model predicted the observed pattern of slope variation, so providing good empirical support for a two-stage process of binocular contrast transduction. [Supported by EPSRC GR/S74515/01]
Resumo:
We studied the visual mechanisms that serve to encode spatial contrast at threshold and supra-threshold levels. In a 2AFC contrast-discrimination task, observers had to detect the presence of a vertical 1 cycle deg-1 test grating (of contrast dc) that was superimposed on a similar vertical 1 cycle deg-1 pedestal grating, whereas in pattern masking the test grating was accompanied by a very different masking grating (horizontal 1 cycle deg-1, or oblique 3 cycles deg-1). When expressed as threshold contrast (dc at 75% correct) versus mask contrast (c) our results confirm previous ones in showing a characteristic 'dipper function' for contrast discrimination but a smoothly increasing threshold for pattern masking. However, fresh insight is gained by analysing and modelling performance (p; percent correct) as a joint function of (c, dc) - the performance surface. In contrast discrimination, psychometric functions (p versus logdc) are markedly less steep when c is above threshold, but in pattern masking this reduction of slope did not occur. We explored a standard gain-control model with six free parameters. Three parameters control the contrast response of the detection mechanism and one parameter weights the mask contrast in the cross-channel suppression effect. We assume that signal-detection performance (d') is limited by additive noise of constant variance. Noise level and lapse rate are also fitted parameters of the model. We show that this model accounts very accurately for the whole performance surface in both types of masking, and thus explains the threshold functions and the pattern of variation in psychometric slopes. The cross-channel weight is about 0.20. The model shows that the mechanism response to contrast increment (dc) is linearised by the presence of pedestal contrasts but remains nonlinear in pattern masking.
Resumo:
A graphical process control language has been developed as a means of defining process control software. The user configures a block diagram describing the required control system, from a menu of functional blocks, using a graphics software system with graphics terminal. Additions may be made to the menu of functional blocks, to extend the system capability, and a group of blocks may be defined as a composite block. This latter feature provides for segmentation of the overall system diagram and the repeated use of the same group of blocks within the system. The completed diagram is analyzed by a graphics compiler which generates the programs and data structure to realise the run-time software. The run-time software has been designed as a data-driven system which allows for modifications at the run-time level in both parameters and system configuration. Data structures have been specified to ensure efficient execution and minimal storage requirements in the final control software. Machine independence has been accomodated as far as possible using CORAL 66 as the high level language throughout the entire system; the final run-time code being generated by a CORAL 66 compiler appropriate to the target processor.
Resumo:
Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.
Resumo:
Orthogonal frequency division multiplexing (OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.
Resumo:
In this paper we propose a two phases control method for DSRC vehicle networks at road intersection, where multiple road safety applications may coexist. We consider two safety applications, emergency safety application with high priority and routine safety applications with low priority. The control method is designed to provide high availability and low latency for emergency safety applications while leave as much as possible bandwidth for routine applications. It is expected to be capable of adapting to changing network conditions. In the first phase of the method we use a simulation based offline approach to find out the best configurations for message rate and MAC layer parameters for given numbers of vehicles. In the second phase we use the configurations identified by simulations at roadside access point (AP) for system operation. A utilization function is proposed to balance the QoS performances provided to multiple safety applications. It is demonstrated that the proposed method can largely improve the system performance when compared to fixed control method.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.