942 resultados para contrast thresholds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Strabismic amblyopia is typically associated with several visual deficits, including loss of contrast sensitivity in the amblyopic eye and abnormal binocular vision. Binocular summation ratios (BSRs) are usually assessed by comparing contrast sensitivity for binocular stimuli (sens BIN) with that measured in the good eye alone (sensGOOD), giving BSR = sensBIN/sensGOOD. This calculation provides an operational index of clinical binocular function, but does not assess whether neuronal mechanisms for binocular summation of contrast remain intact. This study was conducted to investigate this question. METHODS. Horizontal sine-wave gratings were used as stimuli (3 or 9 cyc/deg; 200 ms), and the conventional method of assessment (above) was compared with one in which the contrast in the amblyopic eye was adjusted (normalized) to equate monocular sensitivities. RESULTS. In nine strabismic amblyopes (mean age, 32 years), the results confirmed that the BSR was close to unity when the conventional method was used (little or no binocular advantage), but increased to approximately √2 or higher when the normalization method was used. The results were similar to those for normal control subjects (n = 3; mean age, 38 years) and were consistent with the physiological summation of contrast between the eyes. When the normal observers performed the experiments with a neutral-density (ND) filter in front of one eye, their performance was similar to that of the amblyopes in both methods of assessment. CONCLUSIONS. The results indicate that strabismic amblyopes have mechanisms for binocular summation of contrast and that the amblyopic deficits of binocularity can be simulated with an ND filter. The implications of these results for best clinical practice are discussed. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human visual system combines contrast information from the two eyes to produce a single cyclopean representation of the external world. This task requires both summation of congruent images and inhibition of incongruent images across the eyes. These processes were explored psychophysically using narrowband sinusoidal grating stimuli. Initial experiments focussed on binocular interactions within a single detecting mechanism, using contrast discrimination and contrast matching tasks. Consistent with previous findings, dichoptic presentation produced greater masking than monocular or binocular presentation. Four computational models were compared, two of which performed well on all data sets. Suppression between mechanisms was then investigated, using orthogonal and oblique stimuli. Two distinct suppressive pathways were identified, corresponding to monocular and dichoptic presentation. Both pathways impact prior to binocular summation of signals, and differ in their strengths, tuning, and response to adaptation, consistent with recent single-cell findings in cat. Strikingly, the magnitude of dichoptic masking was found to be spatiotemporally scale invariant, whereas monocular masking was dependent on stimulus speed. Interocular suppression was further explored using a novel manipulation, whereby stimuli were presented in dichoptic antiphase. Consistent with the predictions of a computational model, this produced weaker masking than in-phase presentation. This allowed the bandwidths of suppression to be measured without the complicating factor of additive combination of mask and test. Finally, contrast vision in strabismic amblyopia was investigated. Although amblyopes are generally believed to have impaired binocular vision, binocular summation was shown to be intact when stimuli were normalized for interocular sensitivity differences. An alternative account of amblyopia was developed, in which signals in the affected eye are subject to attenuation and additive noise prior to binocular combination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the rules by which visual responses to luminous targets are combined across the two eyes. Previous work has found very different forms of binocular combination for targets defined by increments and by decrements of luminance, with decrement data implying a severe nonlinearity before binocular combination. We ask whether this difference is due to the luminance of the target, the luminance of the background, or the sign of the luminance excursion. We estimated the pre-binocular nonlinearity (power exponent) by fitting a computational model to ocular equibrightness matches. The severity of the nonlinearity had a monotonic dependence on the signed difference between target and background luminance. For dual targets, in which there was both a luminance increment and a luminance decrement (e.g. contrast), perception was governed largely by the decrement. The asymmetry in the nonlinearities derived from the subjective matching data made a clear prediction for visual performance: there should be more binocular summation for detecting luminance increments than for detecting luminance decrements. This prediction was confirmed by the results of a subsequent experiment. We discuss the relation between these results and luminance nonlinearities such as a logarithmic transform, as well as the involvement of contemporary model architectures of binocular vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the cues used to signal avoidance of difficult driving situations and to test the hypothesis that drivers with relatively poor high contrast visual acuity (HCVA) have fewer crashes than drivers with relatively poor normalised low contrast visual acuity (NLCVA). This is because those with poorer HCVA are well aware of their difficulties and avoid dangerous driving situations while those poorer NLCVA are often unaware of the extent of their problem. Age, self-reported situation avoidance and HCVA were collected during a practice based study of 690 drivers. Screening was also carried out on 7254 drivers at various venues, mainly motorway sites, throughout the UK. Age, self-reported situation avoidance and prior crash involvement were recorded and Titmus vision screeners were used to measure HCVA and NLCVA. Situation avoidance increased in reduced visibility conditions and was influenced by age and HCVA. Only half of the drivers used visual cues to signal situation avoidance and most of these drivers used high rather than low contrast cues. A statistical model designed to remove confounding interrelationships between variables showed, for drivers that did not report situation avoidance, that crash involvement decreased for drivers with below average HCVA and increased for those with below average NLCVA. These relationships accounted for less than 1% of the crash variance, so the hypothesis was not strongly supported. © 2002 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of the study is to determine the effect of lutein combined with vitamin and mineral supplementation on contrast sensitivity in people with age-related macular disease (ARMD). Design: A prospective, 9-month, double-masked randomized controlled trial. Setting: Aston University, Birmingham, UK and a UK optometric clinical practice. Subjects: Age-related maculopathy (ARM) and atrophic age-related macular degeneration (AMD) participants were randomized (using a random number generator) to either placebo (n = 10) or active (n=15) groups. Three of the placebo group and two of the active group dropped out. Interventions: The active group supplemented daily with 6 mg lutein combined with vitamins and minerals. The outcome measure was contrast sensitivity (CS) measured using the Pelli-Robson chart, for which the study had 80% power at the 5% significance level to detect a change of 0.3log units. Results: The CS score increased by 0.07 ± 0.07 and decreased by 0.02 ± 0.18 log units for the placebo and active groups, respectively. The difference between these values is not statistically significant (z = 0.903, P = 0.376). Conclusion: The results suggest that 6 mg of lutein supplementation in combination with other antioxidants is not beneficial for this group. Further work is required to establish optimum dosage levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To spatially and temporally characterise the cortical contrast response function to pattern onset stimuli in humans. Methods: Magnetoencephalography (MEG) was used to investigate the human cortical contrast response function to pattern onset stimuli with high temporal and spatial resolution. A beamformer source reconstruction approach was used to spatially localise and identify the time courses of activity at various visual cortical loci. Results: Consistent with the findings of previous studies, MEG beamformer analysis revealed two simultaneous generators of the pattern onset evoked response. These generators arose from anatomically discrete locations in striate and extra-striate visual cortex. Furthermore, these loci demonstrated notably distinct contrast response functions, with striate cortex increasing approximately linearly with contrast, whilst extra-striate visual cortex followed a saturating function. Conclusions: The generators that underlie the pattern onset visual evoked response arise from two distinct regions in striate and extra-striate visual cortex. Significance: The spatially, temporally and functionally distinct mechanisms of contrast processing within the visual cortex may account for the disparate results observed across earlier studies and assist in elucidating causal mechanisms of aberrant contrast processing in neurological disorders. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adapting to blurred images makes in-focus images look too sharp, and vice-versa (Webster et al, 2002 Nature Neuroscience 5 839 - 840). We asked how such blur adaptation is related to contrast adaptation. Georgeson (1985 Spatial Vision 1 103 - 112) found that grating contrast adaptation followed a subtractive rule: perceived (matched) contrast of a grating was fairly well predicted by subtracting some fraction k(~0.3) of the adapting contrast from the test contrast. Here we apply that rule to the responses of a set of spatial filters at different scales and orientations. Blur is encoded by the pattern of filter response magnitudes over scale. We tested two versions - the 'norm model' and 'fatigue model' - against blur-matching data obtained after adaptation to sharpened, in-focus or blurred images. In the fatigue model, filter responses are simply reduced by exposure to the adapter. In the norm model, (a) the visual system is pre-adapted to a focused world and (b) discrepancy between observed and expected responses to the experimental adapter leads to additional reduction (or enhancement) of filter responses during experimental adaptation. The two models are closely related, but only the norm model gave a satisfactory account of results across the four experiments analysed, with one free parameter k. This model implies that the visual system is pre-adapted to focused images, that adapting to in-focus or blank images produces no change in adaptation, and that adapting to sharpened or blurred images changes the state of adaptation, leading to changes in perceived blur or sharpness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last ten years our understanding of early spatial vision has improved enormously. The long-standing model of probability summation amongst multiple independent mechanisms with static output nonlinearities responsible for masking is obsolete. It has been replaced by a much more complex network of additive, suppressive, and facilitatory interactions and nonlinearities across eyes, area, spatial frequency, and orientation that extend well beyond the classical recep-tive field (CRF). A review of a substantial body of psychophysical work performed by ourselves (20 papers), and others, leads us to the following tentative account of the processing path for signal contrast. The first suppression stage is monocular, isotropic, non-adaptable, accelerates with RMS contrast, most potent for low spatial and high temporal frequencies, and extends slightly beyond the CRF. Second and third stages of suppression are difficult to disentangle but are possibly pre- and post-binocular summation, and involve components that are scale invariant, isotropic, anisotropic, chromatic, achromatic, adaptable, interocular, substantially larger than the CRF, and saturated by contrast. The monocular excitatory pathways begin with half-wave rectification, followed by a preliminary stage of half-binocular summation, a square-law transducer, full binocular summation, pooling over phase, cross-mechanism facilitatory interactions, additive noise, linear summation over area, and a slightly uncertain decision-maker. The purpose of each of these interactions is far from clear, but the system benefits from area and binocular summation of weak contrast signals as well as area and ocularity invariances above threshold (a herd of zebras doesn't change its contrast when it increases in number or when you close one eye). One of many remaining challenges is to determine the stage or stages of spatial tuning in the excitatory pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With luminance gratings, psychophysical thresholds for detecting a small increase in the contrast of a weak ‘pedestal’ grating are 2–3 times lower than for detection of a grating when the pedestal is absent. This is the ‘dipper effect’ – a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a ‘disparity dipper’. Are thresholds for disparity modulation (corrugated surfaces), facilitated by the presence of a weak disparity-modulated pedestal? We used a 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.3 or 0.6 c/deg) of a random texture at various pedestal levels. In the first experiment, a clear dipper was found. Thresholds were about 2× lower with weak pedestals than without. But here the phase of modulation (0 or 180 deg) was varied from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, which thus improves performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect was weak or absent. Monte Carlo simulations showed that the influence of uncertainty could account well for the results of both experiments. A corollary is that the visual depth response to small disparities is probably linear, with no threshold-like nonlinearity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of detection and discrimination thresholds yields information about visual signal processing. For luminance contrast, we are 2 - 3 times more sensitive to a small increase in the contrast of a weak 'pedestal' grating, than when the pedestal is absent. This is the 'dipper effect' - a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a 'disparity dipper' - are thresholds for disparity, or disparity modulation (corrugated surfaces), facilitated by the presence of a weak pedestal? Lunn and Morgan (1997 Journal of the Optical Society of America A 14 360 - 371) found no dipper for disparity-modulated gratings, but technical limitations (8-bit greyscale) might have prevented the necessary measurement of very small disparity thresholds. We used a true 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.6 cycle deg-1) of a random texture at various pedestal levels. Which interval contained greater modulation of depth? In the first experiment, a clear dipper was found. Thresholds were about 2X1 lower with weak pedestals than without. But here the phase of modulation (0° or 180°) was randomised from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, thus improving performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect disappeared, confirming Lunn and Morgan's result. The absence of a dipper, coupled with shallow psychometric slopes, suggests that the visual response to small disparities is essentially linear, with no threshold-like nonlinearity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many models of edge analysis in biological vision, the initial stage is a linear 2nd derivative operation. Such models predict that adding a linear luminance ramp to an edge will have no effect on the edge's appearance, since the ramp has no effect on the 2nd derivative. Our experiments did not support this prediction: adding a negative-going ramp to a positive-going edge (or vice-versa) greatly reduced the perceived blur and contrast of the edge. The effects on a fairly sharp edge were accurately predicted by a nonlinear multi-scale model of edge processing [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision], in which a half-wave rectifier comes after the 1st derivative filter. But we also found that the ramp affected perceived blur more profoundly when the edge blur was large, and this greater effect was not predicted by the existing model. The model's fit to these data was much improved when the simple half-wave rectifier was replaced by a threshold-like transducer [May, K. A. & Georgeson, M. A. (2007). Blurred edges look faint, and faint edges look sharp: The effect of a gradient threshold in a multi-scale edge coding model. Vision Research, 47, 1705-1720.]. This modified model correctly predicted that the interaction between ramp gradient and edge scale would be much larger for blur perception than for contrast perception. In our model, the ramp narrows an internal representation of the gradient profile, leading to a reduction in perceived blur. This in turn reduces perceived contrast because estimated blur plays a role in the model's estimation of contrast. Interestingly, the model predicts that analogous effects should occur when the width of the window containing the edge is made narrower. This has already been confirmed for blur perception; here, we further support the model by showing a similar effect for contrast perception. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to distinguish one visual stimulus from another slightly different one depends on the variability of their internal representations. In a recent paper on human visual-contrast discrimination, Kontsevich et al (2002 Vision Research 42 1771 - 1784) re-considered the long-standing question whether the internal noise that limits discrimination is fixed (contrast-invariant) or variable (contrast-dependent). They tested discrimination performance for 3 cycles deg-1 gratings over a wide range of incremental contrast levels at three masking contrasts, and showed that a simple model with an expansive response function and response-dependent noise could fit the data very well. Their conclusion - that noise in visual-discrimination tasks increases markedly with contrast - has profound implications for our understanding and modelling of vision. Here, however, we re-analyse their data, and report that a standard gain-control model with a compressive response function and fixed additive noise can also fit the data remarkably well. Thus these experimental data do not allow us to decide between the two models. The question remains open. [Supported by EPSRC grant GR/S74515/01]