851 resultados para computer vision face recognition detection voice recognition sistemi biometrici iOS
Resumo:
Ce mémoire s'intéresse à la vision par ordinateur appliquée à des projets d'art technologique. Le sujet traité est la calibration de systèmes de caméras et de projecteurs dans des applications de suivi et de reconstruction 3D en arts visuels et en art performatif. Le mémoire s'articule autour de deux collaborations avec les artistes québécois Daniel Danis et Nicolas Reeves. La géométrie projective et les méthodes de calibration classiques telles que la calibration planaire et la calibration par géométrie épipolaire sont présentées pour introduire les techniques utilisées dans ces deux projets. La collaboration avec Nicolas Reeves consiste à calibrer un système caméra-projecteur sur tête robotisée pour projeter des vidéos en temps réel sur des écrans cubiques mobiles. En plus d'appliquer des méthodes de calibration classiques, nous proposons une nouvelle technique de calibration de la pose d'une caméra sur tête robotisée. Cette technique utilise des plans elliptiques générés par l'observation d'un seul point dans le monde pour déterminer la pose de la caméra par rapport au centre de rotation de la tête robotisée. Le projet avec le metteur en scène Daniel Danis aborde les techniques de calibration de systèmes multi-caméras. Pour son projet de théâtre, nous avons développé un algorithme de calibration d'un réseau de caméras wiimotes. Cette technique basée sur la géométrie épipolaire permet de faire de la reconstruction 3D d'une trajectoire dans un grand volume à un coût minime. Les résultats des techniques de calibration développées sont présentés, de même que leur utilisation dans des contextes réels de performance devant public.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Cette thèse s'intéresse à des aspects du tournage, de la projection et de la perception du cinéma stéréo panoramique, appelé aussi cinéma omnistéréo. Elle s'inscrit en grande partie dans le domaine de la vision par ordinateur, mais elle touche aussi aux domaines de l'infographie et de la perception visuelle humaine. Le cinéma omnistéréo projette sur des écrans immersifs des vidéos qui fournissent de l'information sur la profondeur de la scène tout autour des spectateurs. Ce type de cinéma comporte des défis liés notamment au tournage de vidéos omnistéréo de scènes dynamiques, à la projection polarisée sur écrans très réfléchissants rendant difficile l'estimation de leur forme par reconstruction active, aux distorsions introduites par l'omnistéréo pouvant fausser la perception des profondeurs de la scène. Notre thèse a tenté de relever ces défis en apportant trois contributions majeures. Premièrement, nous avons développé la toute première méthode de création de vidéos omnistéréo par assemblage d'images pour des mouvements stochastiques et localisés. Nous avons mis au point une expérience psychophysique qui montre l'efficacité de la méthode pour des scènes sans structure isolée, comme des courants d'eau. Nous proposons aussi une méthode de tournage qui ajoute à ces vidéos des mouvements moins contraints, comme ceux d'acteurs. Deuxièmement, nous avons introduit de nouveaux motifs lumineux qui permettent à une caméra et un projecteur de retrouver la forme d'objets susceptibles de produire des interréflexions. Ces motifs sont assez généraux pour reconstruire non seulement les écrans omnistéréo, mais aussi des objets très complexes qui comportent des discontinuités de profondeur du point de vue de la caméra. Troisièmement, nous avons montré que les distorsions omnistéréo sont négligeables pour un spectateur placé au centre d'un écran cylindrique, puisqu'elles se situent à la périphérie du champ visuel où l'acuité devient moins précise.
Resumo:
Ce mémoire s'inscrit dans le domaine de la vision par ordinateur. Elle s'intéresse à la calibration de systèmes de caméras stéréoscopiques, à la mise en correspondance caméra-projecteur, à la reconstruction 3D, à l'alignement photométrique de projecteurs, au maillage de nuages de points, ainsi qu'au paramétrage de surfaces. Réalisé dans le cadre du projet LightTwist du laboratoire Vision3D, elle vise à permettre la projection sur grandes surfaces arbitraires à l'aide de plusieurs projecteurs. Ce genre de projection est souvent utilisé en arts technologiques, en théâtre et en projection architecturale. Dans ce mémoire, on procède au calibrage des caméras, suivi d'une reconstruction 3D par morceaux basée sur une méthode active de mise en correspondance, la lumière non structurée. Après un alignement et un maillage automatisés, on dispose d'un modèle 3D complet de la surface de projection. Ce mémoire introduit ensuite une nouvelle approche pour le paramétrage de modèles 3D basée sur le calcul efficace de distances géodésiques sur des maillages. L'usager n'a qu'à délimiter manuellement le contour de la zone de projection sur le modèle. Le paramétrage final est calculé en utilisant les distances obtenues pour chaque point du modèle. Jusqu'à maintenant, les méthodes existante ne permettaient pas de paramétrer des modèles ayant plus d'un million de points.
Resumo:
Cette thèse porte sur la reconstruction active de modèles 3D à l’aide d’une caméra et d’un projecteur. Les méthodes de reconstruction standards utilisent des motifs de lumière codée qui ont leurs forces et leurs faiblesses. Nous introduisons de nouveaux motifs basés sur la lumière non structurée afin de pallier aux manques des méthodes existantes. Les travaux présentés s’articulent autour de trois axes : la robustesse, la précision et finalement la comparaison des patrons de lumière non structurée aux autres méthodes. Les patrons de lumière non structurée se différencient en premier lieu par leur robustesse aux interréflexions et aux discontinuités de profondeur. Ils sont conçus de sorte à homogénéiser la quantité d’illumination indirecte causée par la projection sur des surfaces difficiles. En contrepartie, la mise en correspondance des images projetées et capturées est plus complexe qu’avec les méthodes dites structurées. Une méthode d’appariement probabiliste et efficace est proposée afin de résoudre ce problème. Un autre aspect important des reconstructions basées sur la lumière non structurée est la capacité de retrouver des correspondances sous-pixels, c’est-à-dire à un niveau de précision plus fin que le pixel. Nous présentons une méthode de génération de code de très grande longueur à partir des motifs de lumière non structurée. Ces codes ont l’avantage double de permettre l’extraction de correspondances plus précises tout en requérant l’utilisation de moins d’images. Cette contribution place notre méthode parmi les meilleures au niveau de la précision tout en garantissant une très bonne robustesse. Finalement, la dernière partie de cette thèse s’intéresse à la comparaison des méthodes existantes, en particulier sur la relation entre la quantité d’images projetées et la qualité de la reconstruction. Bien que certaines méthodes nécessitent un nombre constant d’images, d’autres, comme la nôtre, peuvent se contenter d’en utiliser moins aux dépens d’une qualité moindre. Nous proposons une méthode simple pour établir une correspondance optimale pouvant servir de référence à des fins de comparaison. Enfin, nous présentons des méthodes hybrides qui donnent de très bons résultats avec peu d’images.
Resumo:
L’analyse de la marche a émergé comme l’un des domaines médicaux le plus im- portants récemment. Les systèmes à base de marqueurs sont les méthodes les plus fa- vorisées par l’évaluation du mouvement humain et l’analyse de la marche, cependant, ces systèmes nécessitent des équipements et de l’expertise spécifiques et sont lourds, coûteux et difficiles à utiliser. De nombreuses approches récentes basées sur la vision par ordinateur ont été développées pour réduire le coût des systèmes de capture de mou- vement tout en assurant un résultat de haute précision. Dans cette thèse, nous présentons notre nouveau système d’analyse de la démarche à faible coût, qui est composé de deux caméras vidéo monoculaire placées sur le côté gauche et droit d’un tapis roulant. Chaque modèle 2D de la moitié du squelette humain est reconstruit à partir de chaque vue sur la base de la segmentation dynamique de la couleur, l’analyse de la marche est alors effectuée sur ces deux modèles. La validation avec l’état de l’art basée sur la vision du système de capture de mouvement (en utilisant le Microsoft Kinect) et la réalité du ter- rain (avec des marqueurs) a été faite pour démontrer la robustesse et l’efficacité de notre système. L’erreur moyenne de l’estimation du modèle de squelette humain par rapport à la réalité du terrain entre notre méthode vs Kinect est très prometteur: les joints des angles de cuisses (6,29◦ contre 9,68◦), jambes (7,68◦ contre 11,47◦), pieds (6,14◦ contre 13,63◦), la longueur de la foulée (6.14cm rapport de 13.63cm) sont meilleurs et plus stables que ceux de la Kinect, alors que le système peut maintenir une précision assez proche de la Kinect pour les bras (7,29◦ contre 6,12◦), les bras inférieurs (8,33◦ contre 8,04◦), et le torse (8,69◦contre 6,47◦). Basé sur le modèle de squelette obtenu par chaque méthode, nous avons réalisé une étude de symétrie sur différentes articulations (coude, genou et cheville) en utilisant chaque méthode sur trois sujets différents pour voir quelle méthode permet de distinguer plus efficacement la caractéristique symétrie / asymétrie de la marche. Dans notre test, notre système a un angle de genou au maximum de 8,97◦ et 13,86◦ pour des promenades normale et asymétrique respectivement, tandis que la Kinect a donné 10,58◦et 11,94◦. Par rapport à la réalité de terrain, 7,64◦et 14,34◦, notre système a montré une plus grande précision et pouvoir discriminant entre les deux cas.
Resumo:
En apprentissage automatique, domaine qui consiste à utiliser des données pour apprendre une solution aux problèmes que nous voulons confier à la machine, le modèle des Réseaux de Neurones Artificiels (ANN) est un outil précieux. Il a été inventé voilà maintenant près de soixante ans, et pourtant, il est encore de nos jours le sujet d'une recherche active. Récemment, avec l'apprentissage profond, il a en effet permis d'améliorer l'état de l'art dans de nombreux champs d'applications comme la vision par ordinateur, le traitement de la parole et le traitement des langues naturelles. La quantité toujours grandissante de données disponibles et les améliorations du matériel informatique ont permis de faciliter l'apprentissage de modèles à haute capacité comme les ANNs profonds. Cependant, des difficultés inhérentes à l'entraînement de tels modèles, comme les minima locaux, ont encore un impact important. L'apprentissage profond vise donc à trouver des solutions, en régularisant ou en facilitant l'optimisation. Le pré-entraînnement non-supervisé, ou la technique du ``Dropout'', en sont des exemples. Les deux premiers travaux présentés dans cette thèse suivent cette ligne de recherche. Le premier étudie les problèmes de gradients diminuants/explosants dans les architectures profondes. Il montre que des choix simples, comme la fonction d'activation ou l'initialisation des poids du réseaux, ont une grande influence. Nous proposons l'initialisation normalisée pour faciliter l'apprentissage. Le second se focalise sur le choix de la fonction d'activation et présente le rectifieur, ou unité rectificatrice linéaire. Cette étude a été la première à mettre l'accent sur les fonctions d'activations linéaires par morceaux pour les réseaux de neurones profonds en apprentissage supervisé. Aujourd'hui, ce type de fonction d'activation est une composante essentielle des réseaux de neurones profonds. Les deux derniers travaux présentés se concentrent sur les applications des ANNs en traitement des langues naturelles. Le premier aborde le sujet de l'adaptation de domaine pour l'analyse de sentiment, en utilisant des Auto-Encodeurs Débruitants. Celui-ci est encore l'état de l'art de nos jours. Le second traite de l'apprentissage de données multi-relationnelles avec un modèle à base d'énergie, pouvant être utilisé pour la tâche de désambiguation de sens.
Resumo:
As the popularity of digital videos increases, a large number illegal videos are being generated and getting published. Video copies are generated by performing various sorts of transformations on the original video data. For effectively identifying such illegal videos, the image features that are invariant to various transformations must be extracted for performing similarity matching. An image feature can be its local feature or global feature. Among them, local features are powerful and have been applied in a wide variety of computer vision aplications .This paper focuses on various recently proposed local detectors and descriptors that are invariant to a number of image transformations.
Resumo:
This paper describes a simple method for internal camera calibration for computer vision. This method is based on tracking image features through a sequence of images while the camera undergoes pure rotation. The location of the features relative to the camera or to each other need not be known and therefore this method can be used both for laboratory calibration and for self calibration in autonomous robots working in unstructured environments. A second method of calibration is also presented. This method uses simple geometric objects such as spheres and straight lines to The camera parameters. Calibration is performed using both methods and the results compared.
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Resumo:
Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing.
Resumo:
Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.
Resumo:
Augmented Reality (AR) is an emerging technology that utilizes computer vision methods to overlay virtual objects onto the real world scene so as to make them appear to co-exist with the real objects. Its main objective is to enhance the user’s interaction with the real world by providing the right information needed to perform a certain task. Applications of this technology in manufacturing include maintenance, assembly and telerobotics. In this paper, we explore the potential of teaching a robot to perform an arc welding task in an AR environment. We present the motivation, features of a system using the popular ARToolkit package, and a discussion on the issues and implications of our research.
Resumo:
Mitjançant les tècniques de visió per computador aquest projecte pretén desenvolupar una aplicació capaç de segmentar la pell, detectar nevus (pigues i altres taques) i poder comparar imatges de pacients amb risc de contreure melanoma preses en moments diferents. Aquest projecte pretén oferir diferents eines informàtiques als dermatòlegs per a propòsits relacionats amb la investigació. L’ objectiu principal d’ aquest projecte és desenvolupar un sistema informàtic que proporcioni als dermatòlegs agilitat a l’hora de gestionar les dades dels pacients amb les sevesimatges corresponents, ajudar-los en la realització de deteccions dels nevus d’aquestes imatges, i ajudar-los en la comparació d’exploracions (amb les deteccions realitzades)de diferents èpoques d’un mateix pacient
Resumo:
L’objectiu d’aquest PFC és estudiar la branca de la detecció d’objectes en vídeos segons el seu moviment. Per fer-ho es crearà un algorisme que sigui capaç de tractar un vídeo, calculant el nombre d’objectes de l’escena i quina és la posició de cada un d’aquests. L’algorisme ha de ser capaç de trobar un conjunt de regions útils i a partir d’aquest, separar-lo en diferents grups, cada un representant un objecte en moviment. La finalitat d’aquest projecte és l’estudi de la detecció d’objectes en vídeo. Intentarem crear un algorisme que ens permeti dur a terme aquest estudi i treure’n conclusions. Pretenem fer un algorisme, o un conjunt d’algorismes, en Matlab que sigui capaç de donat qualsevol vídeo, pugui retornar un conjunt de imatges, o un vídeo, amb els diferents objectes de l’escena destacats. Es faran proves en diferents situacions, des de objectes sintètics amb un moviment clarament definit, fins a proves en seqüències reals extretes de diferents pel•lícules. Per últim es pretén comprovar l’eficiència d’aquest. Ja que el projecte s’emmarca en la línia de recerca de robòtica i visió per computador, la tasca principal serà la manipulació d’imatges. Per tant farem servir el Matlab, ja que les imatges no son res més que matrius i aquest programa permet el càlcul vectorial i matricial d’una manera senzilla i realment eficient