926 resultados para complex polymerization method
Resumo:
A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.
Resumo:
We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.
Resumo:
Cork oak is the second most dominant forest species in Portugal and makes this country the world leader in cork export. Occupational exposure to Chrysonilia sitophila and the Penicillium glabrum complex in cork industry is common, and the latter fungus is associated with suberosis. However, as conventional methods seem to underestimate its presence in occupational environments, the aim of our study was to see whether information obtained by polymerase chain reaction (PCR), a molecular-based method, can complement conventional findings and give a better insight into occupational exposure of cork industry workers. We assessed fungal contamination with the P. glabrum complex in three cork manufacturing plants in the outskirts of Lisbon using both conventional and molecular methods. Conventional culturing failed to detect the fungus at six sampling sites in which PCR did detect it. This confirms our assumption that the use of complementing methods can provide information for a more accurate assessment of occupational exposure to the P. glabrum complex in cork industry.
Resumo:
Introduction: Patients who survive an intensive care unit admission frequently suffer physical and psychological morbidity for many months after discharge. Current rehabilitation pathways are often fragmented and little is known about the optimum method of promoting recovery. Many patients suffer reduced quality of life. Methods and analysis: The authors plan a multicentre randomised parallel group complex intervention trial with concealment of group allocation from outcome assessors. Patients who required more than 48 h of mechanical ventilation and are deemed fit for intensive care unit discharge will be eligible. Patients with primary neurological diagnoses will be excluded. Participants will be randomised into one of the two groups: the intervention group will receive standard ward-based care delivered by the NHS service with additional treatment by a specifically trained generic rehabilitation assistant during ward stay and via telephone contact after hospital discharge and the control group will receive standard ward-based care delivered by the current NHS service. The intervention group will also receive additional information about their critical illness and access to a critical care physician. The total duration of the intervention will be from randomisation to 3 months postrandomisation. The total duration of follow-up will be 12 months from randomisation for both groups. The primary outcome will be the Rivermead Mobility Index at 3 months. Secondary outcomes will include measures of physical and psychological morbidity and function, quality of life and survival over a 12-month period. A health economic evaluation will also be undertaken. Groups will be compared in relation to primary and secondary outcomes; quantitative analyses will be supplemented by focus groups with patients, carers and healthcare workers. Ethics and dissemination: Consent will be obtained from patients and relatives according to patient capacity. Data will be analysed according to a predefined analysis plan.
Resumo:
International audience
Resumo:
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.
Resumo:
Background: The nitration of tyrosine residues in proteins is associated with nitrosative stress, resulting in the formation of 3-nitrotyrosine (3-NT). 3-NT levels in biological samples have been associated with numerous physiological and pathological conditions. For this reason, several attempts have been made in order to develop methods that accurately quantify 3-NT in biological samples. Regarding chromatographic methods, they seem to be very accurate, showing very good sensibility and specificity. However, accurate quantification of this molecule, which is present at very low concentrations both at physiological and pathological states, is always a complex task and a target of intense research. Objectives: We aimed to develop a simple, rapid, low-cost and sensitive 3-NT quantification method for use in medical laboratories as an additional tool for diagnosis and/or treatment monitoring of a wide range of pathologies. We also aimed to evaluate the performance of the HPLC-based method developed here in a wide range of biological matrices. Material and methods: All experiments were performed on a Hitachi LaChrom Elite® HPLC system and separation was carried out using a Lichrocart® 250-4 Lichrospher 100 RP-18 (5μm) column. The method was further validated according to ICH guidelines. The biological matrices tested were serum, whole blood, urine, B16 F-10 melanoma cell line, growth medium conditioned with the same cell line, bacterial and yeast suspensions. Results: From all the protocols tested, the best results were obtained using 0.5% CH3COOH:MeOH:H2O (15:15:70) as the mobile phase, with detection at wavelengths 215, 276 and 356 nm, at 25ºC, and using a flow rate of 1 mL/min. By using this protocol, it was possible to obtain a linear calibration curve (correlation coefficient = 1), limits of detection and quantification in the order of ng/mL, and a short analysis time (<15 minutes per sample). Additionally, the developed protocol allowed the successful detection and quantification of 3-NT in all biological matrices tested, with detection at 356 nm. Conclusion: The method described in this study, which was successfully developed and validated for 3-NT quantification, is simple, cheap and fast, rendering it suitable for analysis in a wide range of biological matrices.
Resumo:
Background: The ageing population, with concomitant increase in chronic conditions, is increasing the presence of older people with complex needs in hospital. People with dementia are one of these complex populations and are particularly vulnerable to complications in hospital. Registered nurses can offer simultaneous assessment and intervention to prevent or mitigate hospital-acquired complications through their skilled brokerage between patient needs and hospital functions. A range of patient outcome measures that are sensitive to nursing care has been tested in nursing work environments across the world. However, none of these measures have focused on hospitalised older patients. Method: This thesis explores nursing-sensitive complications for older patients with and without dementia using an internationally recognised, risk-adjusted patient outcome approach. Specifically explored are: the differences between rates of complications; the costs of complications; and cost comparisons of patient complexity. A retrospective cohort study of an Australian state’s 2006–07 public hospital discharge data was utilised to identify patient episodes for people over age 50 (N=222,440) where dementia was identified as a primary or secondary diagnosis (N=44,422). Extra costs for patient episodes were estimated based on length of stay (LOS) above the average for each patient’s Diagnosis Related Group (DRG) (N=157,178) and were modelled using linear regression analysis to establish the strongest patient complexity predictors of cost. Results: Hospitalised patients with a primary or secondary diagnosis of dementia had higher rates of complications than did their same-age peers. The highest rates and relative risk for people with dementia were found in four key complications: urinary tract infections; pressure injuries; pneumonia, and delirium. While 21.9% of dementia patients (9,751/44,488, p<0.0001) suffered a complication, only 8.8% of non-dementia patients did so (33,501/381,788, p<0.0001), giving dementia patients a 2.5 relative risk of acquiring a complication (p<0.0001). These four key complications in patients over 50 both with and without dementia were associated with an eightfold increase in length of stay (813%, or 3.6 days/0.4 days) and double the increased estimated mean episode cost (199%, or A$16,403/ A$8,240). These four complications were associated with 24.7% of the estimated cost of additional days spent in hospital in 2006–07 in NSW (A$226million/A$914million). Dementia patients accounted for 22.0% of these costs (A$49million/A$226million) even though they were only 10.4% of the population (44,488/426,276 episodes). Hospital-acquired complications, particularly for people with a comorbidity of dementia, cost more than other kinds of inpatient complexity but admission severity was a better predictor of excess cost. Discussion: Four key complications occur more often in older patients with dementia and the high rate of these complications makes them expensive. These complications are potentially preventable. However, the care that can prevent them (such as mobility, hydration, nutrition and communication) is known to be rationed or left unfinished by nurses. Older hospitalised people who have complex needs, such as those with dementia, are more likely to experience care rationing as their care tends to take longer, be less predictable and less curative in nature. This thesis offers the theoretical proposition that evidence-based nursing practices are rationed for complex older patients and that this rationed care contributes to functional and cognitive decline during hospitalisation. This, in turn, contributes to the high rates of complications observed. Thus four key complications can be seen as a ‘Failure to Maintain’ complex older people in hospital. ‘Failure to Maintain’ is the inadequate delivery of essential functional and cognitive care for a complex older person in hospital resulting in a complication, and is recommended as a useful indicator for hospital quality. Conclusions: When examining extra length of stay in hospital, complications and comorbid dementia are costly. Complications are potentially preventable, and dementia care in hospitals can be improved. Hospitals and governments looking to decrease costs can engage in risk-reduction strategies for common nurse sensitive complications such as healthy nursing work environments that minimise nurses’ rationing of functional and cognitive care. The conceptualisation of complex older patients as ‘business as usual’ rather than a ‘burden’ is likely necessary for sustainable health care services of the future. The use of the ‘Failure to Maintain’ indicators at institution and state levels may aid in embedding this approach for complex older patients into health organisations. Ongoing investigation is warranted into the relationships between the largest health services expense (hospitals), the largest hospital population (complex older patients), and the largest hospital expense (nurses). The ‘Failure to Maintain’ quality indicator makes a useful and substantive contribution to further clinical, administrative and research developments.
Resumo:
Bodies On the Line: Violence, Disposable Subjects, and the Border Industrial Complex explores the construction of identity and notions of belonging within an increasingly privatized and militarized Border Industrial Complex. Specifically, the project interrogates how discourses of Mexican migrants as racialized, gendered, and hypersexualized “deviants” normalize violence against border crossers. Starting at Juárez/El Paso border, I follow the expanding border, interrogating the ways that Mexican migrants, regardless of sexual orientation, have been constructed and disciplined according to racialized notions of “sexual deviance." I engage a queer of color critique to argue that sexual deviance becomes a justification for targeting and containing migrant subjects. By focusing on the economic and racially motivated violence that the Border Industrial Complex does to Mexican migrant communities, I expand the critiques that feminists of color have long leveraged against systemic violence done to communities of color through the prison industrial system. Importantly, this project contributes to transnational feminist scholarship by contextualizing border violence within the global circuits of labor, capital, and ideology that shape perceptions of border insecurity. The project contributes an interdisciplinary perspective that uses a multi-method approach to understand how border violence is exercised against Mexicans at the Mexico-US border. I use archival methods to ask how historical records housed at the National Border Patrol Museum and Memorial Library serve as political instruments that reinforce the contemporary use of violence against Mexican migrants. I also use semi-structured interviews with nine frequent border crossers to consider the various ways crossers defined and aligned themselves at the border. Finally, I analyze the master narratives that come to surround specific cases of border violence. To that end, I consider the mainstream media’s coverage, legal proceedings, and policy to better understand the racialized, gendered, and sexualized logics of the violence.
Resumo:
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.
Resumo:
This thesis aims to understand how cells coordinate their motion during collective migration. As previously shown, the motion of individually migrating cells is governed by wave-like cell shape dynamics. The mechanisms that regulate these dynamic behaviors in response to extracellular environment remain largely unclear. I applied shape dynamics analysis to Dictyostelium cells migrating in pairs and in multicellular streams and found that wave-like membrane protrusions are highly coupled between touching cells. I further characterized cell motion by using principle component analysis (PCA) to decompose complex cell shape changes into a serial shape change modes, from which I found that streaming cells exhibit localized anterior protrusion, termed front narrowing, to facilitate cell-cell coupling. I next explored cytoskeleton-based mechanisms of cell-cell coupling by measuring the dynamics of actin polymerization. Actin polymerization waves observed in individual cells were significantly suppressed in multicellular streams. Streaming cells exclusively produced F-actin at cell-cell contact regions, especially at cell fronts. I demonstrated that such restricted actin polymerization is associated with cell-cell coupling, as reducing actin polymerization with Latrunculin A leads to the assembly of F-actin at the side of streams, the decrease of front narrowing, and the decoupling of protrusion waves. My studies also suggest that collective migration is guided by cell-surface interactions. I examined the aggregation of Dictyostelim cells under distinct conditions and found that both chemical compositions of surfaces and surface-adhesion defects in cells result in altered collective migration patterns. I also investigated the shape dynamics of cells suspended on PEG-coated surfaces, which showed that coupling of protrusion waves disappears on touching suspended cells. These observations indicate that collective migration requires a balance between cell-cell and cell-surface adhesions. I hypothesized such a balance is reached via the regulation of cytoskeleton. Indeed, I found cells actively regulate cytoskeleton to retain optimal cell-surface adhesions on varying surfaces, and cells lacking the link between actin and surfaces (talin A) could not retain the optimal adhesions. On the other hand, suspended cells exhibited enhanced actin filament assembly on the periphery of cell groups instead of in cell-cell contact regions, which facilitates their aggregation in a clumping fashion.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Different nanocomposites have been attained by in situ polymerization based on ultra-high molecular weight polyethylene (UHMWPE) and mesoporous SBA-15, this silica being used for immobilization of the FI catalyst bis [N-(3-tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato] titanium (IV) dichloride and as filler as well. Two distinct approaches have been selected for supporting the FI catalyst on the SBA-15 prior polymerization. A study on polymerization activity of this catalyst has been performed under homogenous conditions and upon heterogenization. A study of the effect of presence of mesoporous particles and of the immobilization method is also carried out. Moreover, the thermal characterization, phase transitions and mechanical response of some pristine UHMWPEs and UHMWPE/SBA-15 materials have been carried out. Relationships with variations on molar mass, impregnation method of catalyst and final SBA-15 content have been established.