883 resultados para complex polymerization method
Resumo:
The phase formation kinetics of YAP (YAlO(3)) synthesized through the polymeric precursor method was investigated by thermal analysis, X-ray diffraction and FT-IR spectroscopy. We demonstrated that the YAP synthesis is highly dependent on the heat and mass transport during all stages of the synthesis route. In the first stages, during the preparation of amorphous precursor, ""hot spots"" need to be suppressed to avoid the occurrence of chemical inhomogeneities. Very high heating rates combined with small amorphous particles are advantageous in the last stage during the formation of crystalline phase. We were able to synthesize nanosized particles of YAP single phase at temperatures around 1100 A degrees C for future preparation of phosphors or ceramics for optics.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This Letter describes a method for the quantification of the diversity of non-linear dynamics in complex networks as a consequence of self-avoiding random walks. The methodology is analyzed in the context of theoretical models and illustrated with respect to the characterization of the accessibility in urban streets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
355 nm light irradiation of fac-[Mn(CO)(3)(phen)(imH)](+) (fac-1) produces the mer-1 isomer and a long lived radical which can be efficiently trapped by electron acceptor molecules. EPR experiments shows that when excited, the manganese(I) complex can be readily oxidized by one-electron process to produce Mn(II) and phen(.-). In the present study, DFT calculations have been used to investigated the photochemical isomerization of the parent Mn(I) complex and to characterize the electronic structures of the long lived radical. The theoretical calculations have been performed on both the fac-1 and mer-1 species as well as on their one electron oxidized species fac-1+ and mer-1+ for the lowest spin configurations (S = 1/2) and fac-6 and mer-6 (S = 5/2) for the highest one to characterize these complexes. In particular, we used a charge decomposition analysis (CDA) and a natural bonding orbital (NBO) to have a better understanding of the chemical bonding in terms of the nature of electronic interactions. The observed variations in geometry and bond energies with an increasing oxidation state in the central metal ion are interpreted in terms of changes in the nature of metal-ligand bonding interactions. The X-ray structure of fac-1 is also described. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The coordination chemistry of the ligand N-thiazol-2-yl-toluenesulfonamidate towards the copper(II) ion has been investigated using an electrochemical synthesis method. The X-ray structure of this complex was elucidated and is discussed. The compound crystallised in the monoclinic crystal system, P2(1)/c space group with a = 17.3888(9), b = 16.3003(9), c = 18.3679(9) angstrom and beta = 114.3640(10)degrees. Four bidentate sulfathiazolato anions bridge two metal centers in a paddle-wheel fashion, with the nitrogen atoms as donors to give a dimeric species with a Cu center dot center dot center dot Cu distance of 2.7859(5) angstrom.
Resumo:
Given an algorithm A for solving some mathematical problem based on the iterative solution of simpler subproblems, an outer trust-region (OTR) modification of A is the result of adding a trust-region constraint to each subproblem. The trust-region size is adaptively updated according to the behavior of crucial variables. The new subproblems should not be more complex than the original ones, and the convergence properties of the OTR algorithm should be the same as those of Algorithm A. In the present work, the OTR approach is exploited in connection with the ""greediness phenomenon"" of nonlinear programming. Convergence results for an OTR version of an augmented Lagrangian method for nonconvex constrained optimization are proved, and numerical experiments are presented.
Resumo:
The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A flow system exploiting the multicommutation approach is proposed for spectrophotometric determination of tannin in beverages. The procedure is based on the reduction of Cu(II) in the presence of 4,4`-dicarboxy-2,2`-biquinoline, yielding a complex with maximum absorption at 558 nm. Calibration graph was linear (r=0.999) for tannic acid concentrations up to 5.00 mu mol L-1. The detection limit and coefficient of variation were estimated as 10 nmol L-1 (99.7% confidence level) and 1% (1.78 mu mol L-1 tannic acid, n=10), respectively. The sampling rate was 50 determinations per hour. The proposed procedure is more sensitive and selective than the official Folin-Denis method, also minimizing drastically waste generation. Recoveries within 91.8 and 115% were estimated for total tannin determination in tea and wine samples. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
Resumo:
The complex of Brookhart Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6- diisopropylphenyl)-acenaphthenediimine) has been characterized after impregnation on silica (S1) and MAO-modified silicas (4.0, 8.0 and 23.0 wts.% Al/SiO2 called S2, S3 and S4, respectively). The treatment of these heterogeneous systems with MAO produces some active catalysts for the polymerization of the ethylene. A high catalytic activity has been gotten while using the system supported 1/S3 (196 kg of PE/mol[Ni].h.atm; toluene, Al/Ni = 1000, 30ºC, 60 min and atmospheric pressure of ethylene). The effects of polymerization conditions have been tested with the catalyst supported in S2 and the best catalytic activity has been gotten with solvent hexane, MAO as cocatalyst, molar ratio Al/Ni of 1000 and to the temperature of 30°C (285 kg of PE/mol[Ni].h.atm). When the reaction has been driven according to the in situ methodology, the activity practically doubled and polymers showed some similar properties. Polymers products by the supported catalysts showed the absence of melting fusion, results similar to those gotten with the homogeneous systems by DSC analysis. But then, polymers gotten with the transplanted system present according to the GPC’s curves the polydispersity (MwD) varies between 1.7 and 7.0. A polyethylene blend (BPE/LPE) was prepared using the complex Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {TpMs*}TiCl3 (2) (TpMs* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)) supported in situ on MAO-modified silica (4.0 wts. -% Al/SiO2, S2). Reactions of polymerization of ethylene have been executed in the toluene in two different temperatures (0 and 30°C), varying the molars fraction of nickel (xNi), and using MAO as external cocatalyst. To all temperatures, the activities show a linear variation tendency with xNi and indicate the absence of the effect synergic between the species of nickel and the titanium. The maximum of activity have been found at 0°C. The melting temperature for the blends of polyethylene produced at 0 °C decrease whereas xNi increases indicating a good compatibility between phases of the polyethylene gotten with the two catalysts. The melting temperature for the blends of polyethylene showed be depend on the order according to which catalysts have been supported on the MAO-modified silica. The initial immobilization of 1 on the support (2/1/S2) product of polymers with a melting temperature (Tm) lower to the one of the polymer gotten when the titanium has been supported inicially (1/2/S2). The observation of polyethylenes gotten with the two systems (2/1/S2 and 1/2/S2) by scanning electron microscopy (SEM) showed the spherical polymer formation showing that the spherical morphology of the support to been reproduced. Are described the synthesis, the characterization and the catalytic properties for the oligomerization of the ethylene of four organometallics compounds of CrIII with ligands ([bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine] chromium (III) chloride (3a), [bis[2-(3,5- dimethyl-l-pyrazolyl)ethyl]benzylamine] chromium (III) chloride (3b), [bis[2-(3,5-dimethyl-lpyrazolyl) ethyl]ether] chromiun(III)chloride (3c), [bis[2-(3-phenyl-lpyrazolyl) ethyl]ether]chromiun(III)chloride (3d)). In relation of the oligomerization, at exception made of the compounds 3a, all complex of the chromium showed be active after activation with MAO and the TOF gotten have one effect differentiated to those formed with CrCl3(thf)3. The coordination of a tridentate ligand on the metallic center doesn't provoke any considerable changes on the formation of the C4 and C6, but the amount of C8 are decrease and the C10 and C12+ have increased. The Polymers produced by the catalyst 3a to 3 and 20 bar of ethylene have, according to analyses by DSC, the temperatures of fusion of 133,8 and 136ºC respectively. It indicates that in the two cases the production of high density polyethylene. The molar mass, gotten by GPC, is 46647 g/mols with MwD = 2,4 (3 bar). The system 3c/MAO showed values of TOF, activity and selectivity to different α-olefins according to the pressure of ethylene uses. Himself that shown a big sensibility to the concentration of ethylene solubilized.
Resumo:
In assessing the economic impact of a sector or group of sectors on a single or multiregional economy, input-output analysis has proven to be a popular method. . However, there has a problem in displaying all the information that can be obtained from this analytical approach. In this paper, we have tried to set new directions in the use of input-output analysis by presenting an improved way of looking at the economic landscapes. While this is not a new concept, a new meaning is explored in this paper; essentially, it will now be possible to visualize, in a simple picture, all the relations in the economy as well as being able to view how one sector is related to the other sectors/regions in the economy. These relations can be measured in terms of structural changes, production, value added, employment, imports, etc. While all the possibilities cannot be explored in this paper, the basic idea is given here and the smart reader can uncover all the various possibilities. To illustrate the power of analysis provided by the economic landscapes, an application is made to the sugar cane complex using an interregional inputoutput system for the Brazilian economy, constructed for 2 regions (Northeast and Rest of Brazil), for the years of 1985, 1992, and 1995.
Resumo:
Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%
Resumo:
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.