828 resultados para cloud computing resources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes research on End-User Computing (EUC) in small business in an environment where no Information System (IS) support and expertise are available. The research aims to identify the factors that contribute to EUC Sophistication and understand the extent small firms are capable of developing their own applications. The intention is to assist small firms to adopt EUC, encourage better utilisation of their IT resources and gain the benefits associated with computerisation. The factors examined are derived inductively from previous studies where a model is developed to map these factors with the degree of sophistication associated with IT and EUC. This study attempts to combine the predictive power of quantitative research through surveys with the explanatory power of qualitative research through action-oriented case study. Following critical examination of the literature, a survey of IT Adoption and EUC was conducted. Instruments were then developed to measure EUC and IT Sophistication indexes based on sophistication constructs adapted from previous studies using data from the survey. This is followed by an in-depth action case study involving two small firms to investigate the EUC phenomenon in its real life context. The accumulated findings from these mixed research strategies are used to form the final model of EUC Sophistication in small business. Results of the study suggest both EUC Sophistication and the Presence of EUC in small business are affected by Management Support and Behaviour towards EUC. Additionally EUC Sophistication is also affected by the presence of an EUC Champion. Results are also consistent with respect to the independence between IT Sophistication and EUC Sophistication. The main research contributions include an accumulated knowledge of EUC in small business, the Model of EUC Sophistication, an instrument to measure EUC Sophistication Index for small firms, and a contribution to research methods in IS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classification is the most basic method for organizing resources in the physical space, cyber space, socio space and mental space. To create a unified model that can effectively manage resources in different spaces is a challenge. The Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports generalization and specialization on multi-dimensional classifications. This paper introduces the basic concepts of RSM, and proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments. This model also enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with normal form and integrity guarantees. Some extensions and applications of the P-RSM are introduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an extended version of an article presented at the Second International Conference on Software, Services and Semantic Technologies, Sofia, Bulgaria, 11–12 September 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.2.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenonal growth of the Internet has connected us to a vast amount of computation and information resources around the world. However, making use of these resources is difficult due to the unparalleled massiveness, high communication latency, share-nothing architecture and unreliable connection of the Internet. In this dissertation, we present a distributed software agent approach, which brings a new distributed problem-solving paradigm to the Internet computing researches with enhanced client-server scheme, inherent scalability and heterogeneity. Our study discusses the role of a distributed software agent in Internet computing and classifies it into three major categories by the objects it interacts with: computation agent, information agent and interface agent. The discussion of the problem domain and the deployment of the computation agent and the information agent are presented with the analysis, design and implementation of the experimental systems in high performance Internet computing and in scalable Web searching. ^ In the computation agent study, high performance Internet computing can be achieved with our proposed Java massive computation agent (JAM) model. We analyzed the JAM computing scheme and built a brutal force cipher text decryption prototype. In the information agent study, we discuss the scalability problem of the existing Web search engines and designed the approach of Web searching with distributed collaborative index agent. This approach can be used for constructing a more accurate, reusable and scalable solution to deal with the growth of the Web and of the information on the Web. ^ Our research reveals that with the deployment of the distributed software agent in Internet computing, we can have a more cost effective approach to make better use of the gigantic scale network of computation and information resources on the Internet. The case studies in our research show that we are now able to solve many practically hard or previously unsolvable problems caused by the inherent difficulties of Internet computing. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the reusability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective, providing new features and enriching the mobile user’s experience through a broad scope of potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il mondo dell’Internet of Things e del single board computing sono settori in forte espansione al giorno d’oggi e le architetture ARM sono, al momento, i dominatori in questo ambito. I sistemi operativi e i software si stanno evolvendo per far fronte a questo cambiamento e ai nuovi casi d’uso che queste tecnologie introducono. In questa tesi ci occuperemo del porting della distribuzione Linux Sabayon per queste architetture, la creazione di un infrastruttura per il rilascio delle immagini e la compilazione dei pacchetti software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allocating resources optimally is a nontrivial task, especially when multiple

self-interested agents with conflicting goals are involved. This dissertation

uses techniques from game theory to study two classes of such problems:

allocating resources to catch agents that attempt to evade them, and allocating

payments to agents in a team in order to stabilize it. Besides discussing what

allocations are optimal from various game-theoretic perspectives, we also study

how to efficiently compute them, and if no such algorithms are found, what

computational hardness results can be proved.

The first class of problems is inspired by real-world applications such as the

TOEFL iBT test, course final exams, driver's license tests, and airport security

patrols. We call them test games and security games. This dissertation first

studies test games separately, and then proposes a framework of Catcher-Evader

games (CE games) that generalizes both test games and security games. We show

that the optimal test strategy can be efficiently computed for scored test

games, but it is hard to compute for many binary test games. Optimal Stackelberg

strategies are hard to compute for CE games, but we give an empirically

efficient algorithm for computing their Nash equilibria. We also prove that the

Nash equilibria of a CE game are interchangeable.

The second class of problems involves how to split a reward that is collectively

obtained by a team. For example, how should a startup distribute its shares, and

what salary should an enterprise pay to its employees. Several stability-based

solution concepts in cooperative game theory, such as the core, the least core,

and the nucleolus, are well suited to this purpose when the goal is to avoid

coalitions of agents breaking off. We show that some of these solution concepts

can be justified as the most stable payments under noise. Moreover, by adjusting

the noise models (to be arguably more realistic), we obtain new solution

concepts including the partial nucleolus, the multiplicative least core, and the

multiplicative nucleolus. We then study the computational complexity of those

solution concepts under the constraint of superadditivity. Our result is based

on what we call Small-Issues-Large-Team games and it applies to popular

representation schemes such as MC-nets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the usability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective,providing new features and enriching the mobile user’s experience through a broad scope of potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the Accurate Google Cloud Simulator (AGOCS) – a novel high-fidelity Cloud workload simulator based on parsing real workload traces, which can be conveniently used on a desktop machine for day-to-day research. Our simulation is based on real-world workload traces from a Google Cluster with 12.5K nodes, over a period of a calendar month. The framework is able to reveal very precise and detailed parameters of the executed jobs, tasks and nodes as well as to provide actual resource usage statistics. The system has been implemented in Scala language with focus on parallel execution and an easy-to-extend design concept. The paper presents the detailed structural framework for AGOCS and discusses our main design decisions, whilst also suggesting alternative and possibly performance enhancing future approaches. The framework is available via the Open Source GitHub repository.