973 resultados para cerebrospinal fluid flow
Resumo:
Crystallization is a purification method used to obtain crystalline product of a certain crystal size. It is one of the oldest industrial unit processes and commonly used in modern industry due to its good purification capability from rather impure solutions with reasonably low energy consumption. However, the process is extremely challenging to model and control because it involves inhomogeneous mixing and many simultaneous phenomena such as nucleation, crystal growth and agglomeration. All these phenomena are dependent on supersaturation, i.e. the difference between actual liquid phase concentration and solubility. Homogeneous mass and heat transfer in the crystallizer would greatly simplify modelling and control of crystallization processes, such conditions are, however, not the reality, especially in industrial scale processes. Consequently, the hydrodynamics of crystallizers, i.e. the combination of mixing, feed and product removal flows, and recycling of the suspension, needs to be thoroughly investigated. Understanding of hydrodynamics is important in crystallization, especially inlargerscale equipment where uniform flow conditions are difficult to attain. It is also important to understand different size scales of mixing; micro-, meso- and macromixing. Fast processes, like nucleation and chemical reactions, are typically highly dependent on micro- and mesomixing but macromixing, which equalizes the concentrations of all the species within the entire crystallizer, cannot be disregarded. This study investigates the influence of hydrodynamics on crystallization processes. Modelling of crystallizers with the mixed suspension mixed product removal (MSMPR) theory (ideal mixing), computational fluid dynamics (CFD), and a compartmental multiblock model is compared. The importance of proper verification of CFD and multiblock models is demonstrated. In addition, the influence of different hydrodynamic conditions on reactive crystallization process control is studied. Finally, the effect of extreme local supersaturation is studied using power ultrasound to initiate nucleation. The present work shows that mixing and chemical feeding conditions clearly affect induction time and cluster formation, nucleation, growth kinetics, and agglomeration. Consequently, the properties of crystalline end products, e.g. crystal size and crystal habit, can be influenced by management of mixing and feeding conditions. Impurities may have varying impacts on crystallization processes. As an example, manganese ions were shown to replace magnesium ions in the crystal lattice of magnesium sulphate heptahydrate, increasing the crystal growth rate significantly, whereas sodium ions showed no interaction at all. Modelling of continuous crystallization based on MSMPR theory showed that the model is feasible in a small laboratoryscale crystallizer, whereas in larger pilot- and industrial-scale crystallizers hydrodynamic effects should be taken into account. For that reason, CFD and multiblock modelling are shown to be effective tools for modelling crystallization with inhomogeneous mixing. The present work shows also that selection of the measurement point, or points in the case of multiprobe systems, is crucial when process analytical technology (PAT) is used to control larger scale crystallization. The thesis concludes by describing how control of local supersaturation by highly localized ultrasound was successfully applied to induce nucleation and to control polymorphism in reactive crystallization of L-glutamic acid.
Resumo:
Case-based reasoning (CBR) is a recent approach to problem solving and learning that has got a lot of attention over the last years. In this work, the CBR methodology is used to reduce the time and amount of resources spent on carry out experiments to determine the viscosity of the new slurry. The aim of this work is: to develop a CBR system to support the decision making process about the type of slurries behavior, to collect a sufficient volume of qualitative data for case base, and to calculate the viscosity of the Newtonian slurries. Firstly in this paper, the literature review about the types of fluid flow, Newtonian and non-Newtonian slurries is presented. Some physical properties of the suspensions are also considered. The second part of the literature review provides an overview of the case-based reasoning field. Different models and stages of CBR cycles, benefits and disadvantages of this methodology are considered subsequently. Brief review of the CBS tools is also given in this work. Finally, some results of work and opportunities for system modernization are presented. To develop a decision support system for slurry viscosity determination, software application MS Office Excel was used. Designed system consists of three parts: workspace, the case base, and section for calculating the viscosity of Newtonian slurries. First and second sections are supposed to work with Newtonian and Bingham fluids. In the last section, apparent viscosity can be calculated for Newtonian slurries.
Resumo:
Particle Image Velocimetry, PIV, is an optical measuring technique to obtain velocity information of a flow in interest. With PIV it is possible to achieve two or three dimensional velocity vector fields from a measurement area instead of a single point in a flow. Measured flow can be either in liquid or in gas form. PIV is nowadays widely applied to flow field studies. The need for PIV is to obtain validation data for Computational Fluid Dynamics calculation programs that has been used to model blow down experiments in PPOOLEX test facility in the Lappeenranta University of Technology. In this thesis PIV and its theoretical background are presented. All the subsystems that can be considered to be part of a PIV system are presented as well with detail. Emphasis is also put to the mathematics behind the image evaluation. The work also included selection and successful testing of a PIV system, as well as the planning of the installation to the PPOOLEX facility. Already in the preliminary testing PIV was found to be good addition to the measuring equipment for Nuclear Safety Research Unit of LUT. The installation to PPOOLEX facility was successful even though there were many restrictions considering it. All parts of the PIV system worked and they were found out to be appropriate for the planned use. Results and observations presented in this thesis are a good background to further PIV use.
Resumo:
This study characterized the normal musculoskeletal anatomy of the cervical segment of the spine of dogs by means of B-mode ultrasonography. The objective was to establish the role of B-mode ultrasonography for the anatomical evaluation of the cervical spine segment in dogs, by comparing the ultrasonographic findings with images by computed tomography and magnetic resonance imaging. The ultrasound examination, in transverse and median sagittal sections, allowed to identify a part of the epaxial cervical musculature, the bone surface of the cervical vertebrae and parts of the spinal cord through restricted areas with natural acoustic windows, such as between the atlanto-occipital joint, axis and atlas, and axis and the third cervical vertebra. The images, on transverse and sagittal planes, by low-field magnetic resonance imaging, were superior for the anatomical identification of the structures, due to higher contrast between the different tissues in this modality. Computed tomography showed superiority for bone detailing when compared with ultrasonography. As for magnetic resonance imaging, in addition to the muscles and cervical vertebrae, it is possible to identify the cerebrospinal fluid and differentiate between the nucleus pulposus and annulus fibrosus of the intervertebral discs. Although not the scope of this study, with knowledge of the ultrasonographic anatomy of this region, it is believed that some lesions can be identified, yet in a limited manner, when compared with the information obtained mainly with magnetic resonance imaging. The ultrasound examination presented lower morphology diagnostic value compared with the other modalities.
Resumo:
In addition to listeriosis which is relatively common in ruminants, there are three other uncommon suppurative intracranial processes (SIP) identifiable in adult ungulates as brain abscess, basilar empyema and suppurative meningitis. The present paper reports the epidemiological, clinical, laboratorial, pathological and microbiological findings of 15 domestic ruminants with SIP. A total of 15 animals were selected (eight sheep, four cattle and three goats); with the definitive diagnoses of basilar empyema (n=3), brain abscess (n=1), listeriosis (n=5) and suppurative meningitis (n=6). Hematology revealed leukocytosis with inversion of the lymphocyte/ neutrophil ratio in 4 cases. In the majority of animals, cerebrospinal fluid (CSF) presented light yellow coloration and cloudy aspect due to neutrophilic pleocytosis (15 - 997 leukocytes/µL). Microbiological culture of CSF or central nervous system (CNS) fragments resulted on isolation of Trueperella (Arcanobacterium) pyogenes,Listeria monocytogenes,Escherichia coli and Stenotrophomonas sp. In a goat with thalamic abscess, microbiological assay was not performed, but Gram positive bacilli type bacteria were observed in histology. The diagnosis of these outbreaks was based on the association of epidemiological, clinical, pathological and bacteriological findings; reiterating that the infectious component remains an important cause of CNS disease in domestic ruminants and also shows the need for dissemination of information about the most effective preventive measures for the ranchers.
Resumo:
Thrombotic meningoencephalitis (TME) is a fatal neurological disease of cattle, predominantly from North America, that is caused by Histophilus somniwith sporadic descriptions from other countries. This manuscript describes the occurrence of spontaneous TME in cattle from northern Paraná, Brazil. Most cattle had acute neurological manifestations characteristic of brain dysfunction. Hematological and cerebrospinal fluid analyses were not suggestive of bacterial infections of the brain. Histopathology revealed meningoencephalitis with vasculitis and thrombosis of small vessels that contained discrete neutrophilic and/or lymphocytic infiltrates admixed with fibrin at the brainstem, cerebral cortex, and trigeminal nerve ganglion of all animals. All tissues from the central nervous system used during this study were previously characterized as negative for rabies virus by the direct immunofluorescence assay. PCR and RT-PCR assays investigated the participation of infectious agents associated with bovine neurological disease by targeting specific genes of H. somni, Listeria monocytogenes, bovine herpesvirus -1 and -5, bovine viral diarrhea virus, and ovine herpesvirus-2. PCR and subsequent sequencing resulted in partial fragments of the 16S rRNA gene of H. somni from brain sections of all animals with histopathological diagnosis of TME; all other PCR/RT-PCR assays were negative. These findings confirmed the participation of H. somni in the neuropathological disease observed in these animals, extend the geographical distribution of this disease, and support previous findings of H. somni from Brazil.
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
To investigate the behavioral effects of different vehicles microinjected into the dorsal periaqueductal grey (DPAG) of male Wistar rats, weighing 200-250 g, tested in the elevated plus maze, animals were implanted with cannulas aimed at this structure. One week after surgery the animals received microinjections into the DPAG of 0.9% (w/v) saline, 10% (v/v) dimethyl sulfoxide (DMSO), 2% (v/v) Tween-80, 10% (v/v) propylene glycol, or synthetic cerebrospinal fluid (CSF). Ten min after the injection (0.5 µl) the animals (N = 8-13/group) were submitted to the elevated plus maze test. DMSO significantly increased the number of entries into both the open and enclosed arms when compared to 0.9% saline (2.7 ± 0.8 and 8.7 ± 1.3 vs 0.8 ± 0.3 and 5.1 ± 0.9, respectively, Duncan test, P<0.05), and tended to increase enclosed arm entries as compared to 2% Tween-80 (8.7 ± 1.3 vs 5.7 ± 0.9, Duncan test, P<0.10). In a second experiment no difference in plus maze exploration was found between 0.9% saline- or sham-injected animals (N = 11-13/group). These results indicate that intra-DPAG injection of some commonly used vehicles such as DMSO, saline or Tween-80 affects the exploratory activity of rats exposed to the elevated plus maze in statistically different manners
Resumo:
The main objective of the present study was to evaluate the diagnostic value (clinical application) of brain measures and cognitive function. Alzheimer and multiinfarct patients (N = 30) and normal subjects over the age of 50 (N = 40) were submitted to a medical, neurological and cognitive investigation. The cognitive tests applied were Mini-Mental, word span, digit span, logical memory, spatial recognition span, Boston naming test, praxis, and calculation tests. The brain ratios calculated were the ventricle-brain, bifrontal, bicaudate, third ventricle, and suprasellar cistern measures. These data were obtained from a brain computer tomography scan, and the cutoff values from receiver operating characteristic curves. We analyzed the diagnostic parameters provided by these ratios and compared them to those obtained by cognitive evaluation. The sensitivity and specificity of cognitive tests were higher than brain measures, although dementia patients presented higher ratios, showing poorer cognitive performances than normal individuals. Normal controls over the age of 70 presented higher measures than younger groups, but similar cognitive performance. We found diffuse losses of tissue from the central nervous system related to distribution of cerebrospinal fluid in dementia patients. The likelihood of case identification by functional impairment was higher than when changes of the structure of the central nervous system were used. Cognitive evaluation still seems to be the best method to screen individuals from the community, especially for developing countries, where the cost of brain imaging precludes its use for screening and initial assessment of dementia.
Resumo:
From 1989 to 1995, a total of 391 Haemophilus influenzae isolates were recovered from the cerebrospinal fluid (CSF) of hospitalized patients in São Paulo, Brazil. The majority of strains were isolated from infants aged less than 5 years. Strains belonging to biotype I (64.7%), biotype II (34.5%) and biotype IV (0.76%) were detected. Ninety-nine percent of these strains were serotype b. Minimal inhibitory concentration (MIC) was determined for ampicillin, chloramphenicol and ceftriaxone. The ß-lactamase assay was performed for all strains. The rate of ß-lactamase producer strains ranged from 10 to 21.4% during a period of 7 years, with an overall rate of 13.8%. Of the 391 strains analyzed, none was ß-lactamase negative ampicillin resistant (BLNAR). A total of 9.7% of strains showed resistance to both ampicillin and chloramphenicol; however, 4% of them were resistant to ampicillin only and 2% to chloramphenicol. All strains were susceptible to ceftriaxone and the MIC90 was 0.007 µg/ml, suggesting that ceftriaxone could be an option for the treatment of bacterial meningitis in pediatric patients who have not been screened for drug sensitivity.
Resumo:
There is a close association between the location of angiotensin (Ang) receptors and many important brain nuclei involved in the regulation of the cardiovascular system. The present review encompasses the physiological role of Ang II in the brainstem, particularly in relation to its influence on baroreflex control of the heart and kidney. Activation of AT1 receptors in the brainstem by fourth ventricle (4V) administration to conscious rabbits or local administration of Ang II into the rostral ventrolateral medulla (RVLM) of anesthetized rabbits acutely increases renal sympathetic nerve activity (RSNA) and RSNA baroreflex responses. Administration of the Ang antagonist Sarile into the RVLM of anesthetized rabbits blocked the effects of Ang II on the RSNA baroreflex, indicating that the RVLM is the major site of sympathoexcitatory action of Ang II given into the cerebrospinal fluid surrounding the brainstem. However, in conscious animals, blockade of endogenous Ang receptors in the brainstem by the 4V AT1 receptor antagonist losartan resulted in sympathoexcitation, suggesting an overall greater activity of endogenous Ang II within the sympathoinhibitory pathways. However, the RSNA response to airjet stress in conscious rabbits was markedly attenuated. While we found no effect of acute central Ang on heart rate baroreflexes, chronic 4V infusion inhibited the baroreflex and chronic losartan increased baroreflex gain. Thus, brainstem Ang II acutely alters sympathetic responses to specific afferent inputs thus forming part of a potentially important mechanism for the integration of autonomic response patterns. The sympathoexcitatory AT1 receptors appear to be activated during stress, surgery and anesthesia.
Resumo:
Neuron-specific enolase (NSE) is a glycolytic enzyme present almost exclusively in neurons and neuroendocrine cells. NSE levels in cerebrospinal fluid (CSF) are assumed to be useful to estimate neuronal injury and clinical outcome of patients with serious clinical manifestations such as those observed in stroke, head injury, anoxic encephalopathy, encephalitis, brain metastasis, and status epilepticus. We compared levels of NSE in serum (sNSE) and in CSF (cNSE) among four groups: patients with meningitis (N = 11), patients with encephalic injuries associated with impairment of consciousness (ENC, N = 7), patients with neurocysticercosis (N = 25), and normal subjects (N = 8). Albumin was determined in serum and CSF samples, and the albumin quotient was used to estimate blood-brain barrier permeability. The Glasgow Coma Scale score was calculated at the time of lumbar puncture and the Glasgow Outcome Scale (GOS) score was calculated at the time of patient discharge or death. The ENC group had significantly higher cNSE (P = 0.01) and albumin quotient (P = 0.005), but not sNSE (P = 0.14), levels than the other groups (Kruskal-Wallis test). Patients with lower GOS scores had higher cNSE levels (P = 0.035) than patients with favorable outcomes. Our findings indicate that sNSE is not sensitive enough to detect neuronal damage, but cNSE seems to be reliable for assessing patients with considerable neurological insult and cases with adverse outcome. However, one should be cautious about estimating the severity of neurological status as well as outcome based exclusively on cNSE in a single patient.
Resumo:
Tämä työ vastaa tarpeeseen hallita korkeapainevesisumusuuttimen laatua virtausmekaniikan työkalujen avulla. Työssä tutkitaan suutinten testidatan lisäksi virtauksen käyttäytymistä suuttimen sisällä CFD-laskennan avulla. Virtausmallinnus tehdään Navier-Stokes –pohjaisella laskentamenetelmällä. Työn teoriaosassa käsitellään virtaustekniikkaa ja sen kehitystä yleisesti. Lisäksi esitetään suuttimen laskennassa käytettävää perusteoriaa sekä teknisiä ratkaisuja. Teoriaosassa käydään myös läpi laskennalliseen virtausmekaniikkaan (CFD-laskenta) liittyvää perusteoriaa. Tutkimusosiossa esitetään käsitellyt suutintestitulokset sekä mallinnetaan suutinvirtausta ajasta riippumattomaan virtauslaskentaan perustuvalla laskentamenetelmällä. Virtauslaskennassa käytetään OpenFOAM-laskentaohjelmiston SIMPLE-virtausratkaisijaa sekä k-omega SST –turbulenssimallia. Tehtiin virtausmallinnus kaikilla paineilla, joita suuttimen testauksessa myös todellisuudessa käytetään. Lisäksi selvitettiin mahdolliset kavitaatiokohdat suuttimessa ja suunniteltiin kavitaatiota ehkäisevä suutingeometria. Todettiin myös lämpötilan ja epäpuhtauksien vaikuttavan kavitaatioon sekä mallinnettiin lämpötilan vaikutusta. Luotiin malli, jolla suuttimen suunnitteluun liittyviin haasteisiin voidaan vastata numeerisella laskennalla.