999 resultados para cardiac repair
Resumo:
Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the general population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but its accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: New Iowa “Foreclosure Hotline”
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Prevent Home Repair Scams and Disputes
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Take the Scare Out of Auto Repair!
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Take the Scare Out of Auto Repair!
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Advance Fee Loans and Credit Repair Schemes
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Prevent Home Repair Scams and Disputes
Resumo:
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Resumo:
Abstract Purpose: To test the hypothesis that simultaneous closure of at least 2 independent vascular territories supplying the spinal cord and/or prolonged hypotension may be associated with symptomatic spinal cord ischemia (SCI) after thoracic endovascular aortic repair (TEVAR). Methods: A pattern matching algorithm was used to develop a risk model for symptomatic SCI using a prospective 63-patient single-center cohort to test the positive predictive value (PPV) of prolonged intraoperative hypotension and/or simultaneous closure of at least 2 of 4 the vascular territories supplying the spinal cord (left subclavian, intercostal, lumbar, and hypogastric arteries). This risk model was then applied to data extracted from the multicenter European Registry on Endovascular Aortic Repair Complications (EuREC). Between 2002 and 2010, the 19 centers participating in EuREC reported 38 (1.7%) cases of symptomatic spinal cord ischemia among the 2235 patients in the database. Results: In the single-center cohort, direct correlations were seen between the occurrence of symptomatic SCI and both prolonged intraoperative hypotension (PPV 1.00, 95% CI 0.22 to 1.00, p = 0.04) and simultaneous closure of at least 2 independent spinal cord vascular territories (PPV 0.67, 95% CI 0.24 to 0.91, p = 0.005). Previous closure of a single vascular territory was not associated with an increased risk of symptomatic spinal cord ischemia (PPV 0.07, 95% CI 0.01 to 0.16, p = 0.56). The combination of prolonged hypotension and simultaneous closure of at least 2 territories exhibited the strongest association (PPV 0.75, 95% CI 0.38 to 0.75, p<0.0001). Applying the model to the entire EuREC cohort found an almost perfect agreement between the predicted and observed risk factors (kappa 0.77, 95% CI 0.65 to 0.90). Conclusion: Extensive coverage of intercostal arteries alone by a thoracic stent-graft is not associated with symptomatic SCI; however, simultaneous closure of at least 2 vascular territories supplying the spinal cord is highly relevant, especially in combination with prolonged intraoperative hypotension. As such, these results further emphasize the need to preserve the left subclavian artery during TEVAR.
Resumo:
OBJECTIVE: To examine the relationship of early serum procalcitonin (PCT) levels with the severity of post-cardiac arrest syndrome (PCAS), long-term neurological recovery and the risk of early-onset infections in patients with coma after cardiac arrest (CA) treated with therapeutic hypothermia (TH). METHODS: A prospective cohort of adult comatose CA patients treated with TH (33°C, for 24h) admitted to the medical/surgical intensive care unit, Lausanne University Hospital, was studied. Serum PCT was measured early after CA, at two time-points (days 1 and 2). The SOFA score was used to quantify the severity of PCAS. Diagnosis of early-onset infections (within the first 7 days of ICU stay) was made after review of clinical, radiological and microbiological data. Neurological recovery at 3 months was assessed with Cerebral Performance Categories (CPC), and was dichotomized as favorable (CPC 1-2) vs. unfavorable (CPC 3-5). RESULTS: From December 2009 to April 2012, 100 patients (median age 64 [interquartile range 55-73] years, median time from collapse to ROSC 20 [11-30]min) were studied. Peak PCT correlated with SOFA score at day 1 (Spearman's R=0.44, p<0.0001) and was associated with neurological recovery at 3 months (peak PCT 1.08 [0.35-4.45]ng/ml in patients with CPC 1-2 vs. 3.07 [0.89-9.99] ng/ml in those with CPC 3-5, p=0.01). Peak PCT did not differ significantly between patients with early-onset vs. no infections (2.14 [0.49-6.74] vs. 1.53 [0.46-5.38]ng/ml, p=0.49). CONCLUSIONS: Early elevations of serum PCT levels correlate with the severity of PCAS and are associated with worse neurological recovery after CA and TH. In contrast, elevated serum PCT did not correlate with early-onset infections in this setting.
Resumo:
Acute myocarditis was until recently one of the most difficult diagnoses in cardiology. The spectrum of signs and symptoms is very wide, the usual non-invasive tests lack specificity and the myocardial biopsy is only performed in a minority of cases to confirm the diagnosis. Due to its unique ability to directly image myocardial necrosis, fibrosis and oedema, cardiac magnetic resonance (CMR) is now considered the primary tool for noninvasive assessment of patients with suspected myocarditis. CMR is also useful for monitoring disease activity under treatment. Myocarditis has been associated with the development of dilated cardiomyopathy; CMR could play a role in the follow-up of such cases to detect the progression toward a dilatative phenotype. Precise mapping of myocardial lesions with cardiac MRI is invaluable to guide myocardial biopsy and increase its diagnostic yield by improving sensitivity.
Resumo:
Epigenetic silencing of essential components of DNA repair pathways is a common event in many tumor types, and comprise O6-methylguanine-DNA methyltransferase (MGMT), human mut L homolog 1 (hMLH1), Werner syndrome gene (WRN), breast cancer susceptibility gene 1 (BRCA1), and genes of the Fanconi anemia pathway. Most interestingly, some of these alterations become the Achilles heel of the affected tumors upon treatment with certain classes of anticancer agents. That is, patients whose tumors carry such defects can be stratified for respective therapy rendering some classic DNA damaging agents, such as alkylators or DNA crosslinking agents, into "targeted therapies." Here we review some of the affected repair pathways that, when inactivated, sensitize the tumors to specific drugs and are thus exploitable for individualized therapy.
Resumo:
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Resumo:
Macrophages play a critical role in intestinal wound repair. However, the mechanisms of macrophage-assisted wound repair remain poorly understood. We aimed to characterize more clearly the repair activities of murine and human macrophages. Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of healthy donors (HD) or Crohn's disease (CD) patients or isolated from the intestinal mucosa of HD. In-vitro models were used to study the repair activities of macrophages. We found that murine and human macrophages were both able to promote epithelial repair in vitro. This function was mainly cell contact-independent and relied upon the production of soluble factors such as the hepatocyte growth factor (HGF). Indeed, HGF-silenced macrophages were less capable of promoting epithelial repair than control macrophages. Remarkably, macrophages from CD patients produced less HGF than their HD counterparts (HGF level: 84âeuro0/00±âeuro0/0027âeuro0/00pg/mg of protein and 45âeuro0/00±âeuro0/0034âeuro0/00pg/mg of protein, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·009) and were deficient in promoting epithelial repair (repairing activity: 90·1âeuro0/00±âeuro0/004·6 and 75·8âeuro0/00±âeuro0/008·3, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·0005). In conclusion, we provide evidence that macrophages act on wounded epithelial cells to promote epithelial repair through the secretion of HGF. The deficiency of CD macrophages to secrete HGF and to promote epithelial repair might contribute to the impaired intestinal mucosal healing in CD patients.
Resumo:
BACKGROUND: Sedation and therapeutic hypothermia (TH) delay neurological responses and might reduce the accuracy of clinical examination to predict outcome after cardiac arrest (CA). We examined the accuracy of quantitative pupillary light reactivity (PLR), using an automated infrared pupillometry, to predict outcome of post-CA coma in comparison to standard PLR, EEG, and somato-sensory evoked potentials (SSEP). METHODS: We prospectively studied over a 1-year period (June 2012-June 2013) 50 consecutive comatose CA patients treated with TH (33 °C, 24 h). Quantitative PLR (expressed as the % of pupillary response to a calibrated light stimulus) and standard PLR were measured at day 1 (TH and sedation; on average 16 h after CA) and day 2 (normothermia, off sedation: on average 46 h after CA). Neurological outcome was assessed at 90 days with Cerebral Performance Categories (CPC), dichotomized as good (CPC 1-2) versus poor (CPC 3-5). Predictive performance was analyzed using area under the ROC curves (AUC). RESULTS: Patients with good outcome [n = 23 (46 %)] had higher quantitative PLR than those with poor outcome [n = 27; 16 (range 9-23) vs. 10 (1-30) % at day 1, and 20 (13-39) vs. 11 (1-55) % at day 2, both p < 0.001]. Best cut-off for outcome prediction of quantitative PLR was <13 %. The AUC to predict poor outcome was higher for quantitative than for standard PLR at both time points (day 1, 0.79 vs. 0.56, p = 0.005; day 2, 0.81 vs. 0.64, p = 0.006). Prognostic accuracy of quantitative PLR was comparable to that of EEG and SSEP (0.81 vs. 0.80 and 0.73, respectively, both p > 0.20). CONCLUSIONS: Quantitative PLR is more accurate than standard PLR in predicting outcome of post-anoxic coma, irrespective of temperature and sedation, and has comparable prognostic accuracy than EEG and SSEP.