959 resultados para by-product fuel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to present a procedure that utilizes C-13 NMR for identification of substituent groups which are bonded to carbon skeletons of natural products. For so much was developed a new version of the program (MACRONO), that presents a database with 161 substituent types found in the most varied terpenoids. This new version was widely tested in the identification of the substituents of 60 compounds that, after removal of the signals that did not belong to the carbon skeleton, served to test the prediction of skeletons by using other programs of the expert system (SISTEMAT). (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A capillary zone electrophoresis method using indirect UV detection for the analysis of chloride and sulfate in alcohol fuel samples was developed. The anions were analyzed in less than 3 min using an electrolyte containing 10 mmol 1(-1) chromate and 0.75 mmol 1(-1) hexamethonium bromide (HMB) as electroosmotic flow modifier. Coefficients of variation were better than 0.6% for migration time (n = 10) and between 2.05 and 2.82% for peak area repeatabilities. Analytical curves of peak area versus concentration in the range of 0.065-0.65 mg kg(-1) for chloride and 0.25-4.0 mg kg(-1) for sulfate were linear with coefficients of correlation higher than 0.9996. The limits of detection for sulfate and chloride were 0.033 and 0.041 mg kg(-1), respectively. Recovery values ranged from 85 to 103%. The method was successfully applied for the quantification of sulfate and chloride in five alcohol fuel samples. The concentration of sulfate varied from 0.45 to 3.12 mg kg(-1). Chloride concentrations were below the method's LOD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applied herbicides around the world to control broad leave herbs in many crops: In this study, a method was developed for simultaneous extraction and determination of 2,4D and its major transformation product, i.e., the 2,4-dichlorophenol (2,4-DCP), in soil samples. The herbicide and its degradation product were extracted twice from soil samples, after acidification, by dichloromethane on ultrasound system for 1 h. Both extracts were combined and filtrated in qualitative filter paper and Celitee. The total extract was concentrated in rotatory evaporator, dried under N-2 and finally dissolved in 1 ml of methanol. High Performance Liquid Chromatography with UV detection at 230 nm was used for analysis. Recoveries were obtained from soil samples fortified at 0.1, 1.0, 2.0, 3.0 and 4.0 mg kg(-1) levels and the results varied from 85 to 111% (for 2,4-D) and from 95 to 98% (for 2,4-DCP). For both compounds, the limits of quantification were 0.1 mg kg(-1), which were the loss level at which the accuracy and the precision were studied. Nevertheless, the limits of detection, calculated by considering the blank standard deviation and the minimum concentration level, were 0.03 and 0.02 mg kg for 2,4-D and 2,4-DCP, respectively. This proposed method was applied to soil samples of eucalyptus crops, which was previously treated with the herbicide. Despite that, neither 2,4-D nor its degradation product were detected 30 days after the herbicide application. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymetkylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical defector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol /LiClO4(aq) at a concentration of 1.0 x 10(-3) mol L-1 (80:20 v/v) and a flow-rate of 1.1 mL min(-1). The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL(-1), with detection limits of 1.7 to 2.0 ng mL(-1) and quantification limits from 5.0 to 6.2 ng mL(-1), using injection volume of 20 mu L. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, is presented an alternative and non conventional technique for evaluate the water amount present in the hydrated ethanol used as automotive fuel. The standard technique used in this kind of measure is the use of densimeter. The proposal of this work is based on the measure of the linear attenuation coefficient of hydrated ethanol, using the gamma-ray attenuation technique. The water amount, in volume, can be determined knowing the linear attenuation coefficient of hydrated ethanol. Samples of hydrated ethanol, collected at fuel stations, located in Sorocaba, SP, Brazil, were analyzed and the results showed the feasibility of the technique. © 2011 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH 2, PtO 2, SnO 2 and IrO 2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded. © 2012 Sociedade Brasileira de Química.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromatographic and electroanalytical methods were developed to detect and quantify Sudan II (SD-II) dye in fuel ethanol samples. Sudan II is reduced at +0.50 V vs. Ag/AgCl on a glassy carbon electrode using Britton-Robinson buffer (pH 4.0) and N,N-dimethylformamide (70:30, v/v) + sodium dioctyl sulfosuccinate surfactant as supporting electrolyte, due to the azo group. This is the basis for its determination by square-wave voltammetry (SWV). Using the optimized conditions, it is possible to get a linear calibration curve from 3.00×10-6 to 1.80×10-5 mol L-1 (r = 0.998) with limits of detection (LOD) and quantification (LOQ) of 2.05×10-6 and 6.76×10-6 mol L-1, respectively. In addition, the hydroxyl substituent in the SD-II dye is also oxidized at +0.85 V vs. Ag/AgCl, which was conveniently used for its determination by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ED). Under the optimized condition, the SD-II dye was eluted and separated using a reversed-phase column (cyanopropyl, CN) using isocratic elution with the mobile phase containing acetonitrile and aqueous lithium chloride (5.00×10-4 mol L-1) at 70:30 (v/v) and a flow rate of 1.2 mL min-1. Linear calibration curves were obtained from 3.00×10-7 to 2.00×10-6 mol L-1 (r = 0.999) with LOD and LOQ of 3.10×10-8 and 1.05×10-7 mol L-1, respectively. Both methods were simple, fast and suitable to detect and quantify the dye in fuel ethanol samples at recovery values between 83.0 to 102% (SWV) and 88.0 to 112% (HPLC-ED) with satisfactory precision and accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)