935 resultados para brushless excitation
Resumo:
Fabrication of new optical devices based upon the incorporation of rare earth ions via sol-gel methods depends on elimination of dopant ion clusters and residual hydroxyl groups from the final material. The optical absorption and/or luminescence properties of luminescent rare earth ions are influenced by the local bonding environment and the distribution of the rare-earth dopants in the matrix. Typically, dopants are incorporated into gel via dissolution of soluble species into the initial precursor sol. In this work, Eu3+ is used as optical probe, to assess changes in the local environment. Results of emission, excitation, fluorescence line narrowing and lifetimes studies of Eu3+-doped gels derived from Si(OCH3)4 and fluorinated/chelate Eu3+ precursors are presented. The precursors used in the sol-gel synthesis were: tris (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Eu(III), Eu (III) trifluoromethanesulfonate, Eu(III) acetylacetonate hydrate, Eu (III) trifluoroacetate trihidrate, tris (2,2,6,6-tetramethyl-3,5- heptanedionate) Eu(III) and Eu(NO3)3.6H2O. The results were interpreted in terms of the evolution of the Eu3+ fluorescence in systems varying from solution to the gels densified to 800ºC. The lifetimes studies indicate that the fluorinated precursors are effective at reducing the water content in densified gels.
Resumo:
A multivariate curve resolution method, "GENERALIZED RANK ANNIHILATION METHOD (GRAM)", is discussed and tested with simulated and experimental data. The analysis of simulated data provides general guidelines concerning the condition for uniqueness of a solution for a given problem. The second-order emission-excitation spectra of human and animal dental calculus deposits were used as an experimental data to estimate the performance of the above method. Three porphyrinic spectral profiles, for both human and cat, were obtained by the use of GRAM.
Resumo:
Laser excitation of 0.01 M solutions of 1-indanone (Ia), 1-tetralone (Ib), 1-benzosuberone (Ic), and their a,a -dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum absorption at 425 nm, and lifetimes ranging from 62 ns (IIa) to 5.5ms (Ic). Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, i.e. IIIa-c, which show absorption spectra very similar to the parent ketone, with lmax at 430 nm and lifetime in excess of 20 ms. Steady state irradiations show that the a,a -dimethyl ketones IIa and IIc form ortho-alkyl benzaldehydes probably derived from an initial a-cleavage of the corresponding triplet excited states.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal
Resumo:
The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS), microwave induced plasma optical emission spectrometry (MIP-OES), inductively coupled plasma optical emission spectrometry (ICP-OES) , inductively coupled plasma mass spectrometry (ICP-MS) and furnace atomic nonthermal excitation spectrometry (FANES) are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry) is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.
Resumo:
A spectrofluorometric method has been developed and validated for the determination of gemfibrozil. The method is based on the excitation and emission capacities of gemfibrozil with excitation and emission wavelengths of 276 and 304 nm respectively. This method allows de determination of the drug in a self-nanoemulsifying drug delivery system (SNEDDS) for improve its intestinal absorption. Results obtained showed linear relationships with good correlation coefficients (r(2)>0.999) and low limits of detection and quantification (LOD of 0.075 μg mL(-1) and LOQ of 0.226 μg mL(-1)) in the range of 0.2-5 μg mL(-1), equally this method showed a good robustness and stability. Thus the amounts of gemfibrozil released from SNEDDS contained in gastro resistant hard gelatine capsules were analysed, and release studies could be performed satisfactorily.
Resumo:
In this paper a methodology for the computation of Raman scattering cross-sections and depolarization ratios within the Placzek Polarizability Theory is described. The polarizability gradients are derived from the values of the dynamic polarizabilities computed at the excitation frequencies using ab initio Linear Response Theory. A sample application of the computational program, at the HF, MP2 and CCSD levels of theory, is presented for H2O and NH3. The results show that high correlated levels of theory are needed to achieve good agreement with experimental data.
Resumo:
Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer from a fluorescent donor molecule to an appropriate acceptor molecule and a commonly used technique to develop homogeneous assays. If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, FRET might occur. As a consequence, the emission of the donor is decreased and the emission of the acceptor (if fluorescent) increased. Furthermore, the distance between the donor and the acceptor needs to be short enough, commonly 10-100 Å. Typically, the close proximity between the donor and the acceptor is achieved via bioaffinity interactions e.g. antibody binding antigen. Large variety of donors and acceptors exist. The selection of the donor/acceptor pair should be done not only based on the requirements of FRET but also the performance expectancies and the objectives of the application should be considered. In this study, the exceptional fluorescence properties of the lanthanide chelates were employed to develop two novel homogeneous immunoassays: a non-competitive hapten (estradiol) assay based on a single binder and a dual-parametric total and free PSA assay. In addition, the quenching efficiencies and energy transfer properties of various donor/acceptor pairs were studied. The applied donors were either europium(III) or terbium(III) chelates; whereas several organic dyes (both fluorescent and quenchers) acted as acceptors. First, it was shown that if the interaction between the donor/acceptor complexes is of high quality (e.g. biotin-streptavidin) the fluorescence of the europium(III) chelate could be quenched rather efficiently. Furthermore, the quenching based homogeneous non-competitive assay for estradiol had significantly better sensitivity (~67 times) than a corresponding homogeneous competitive assay using the same assay components. Second, if the acceptors were chosen to emit at the emission minima of the terbium(III) chelate, several acceptor emissions could be measured simultaneously without significant cross-talk from other acceptors. Based on these results, the appropriate acceptors were chosen for the dual-parameter assay. The developed homogeneous dual-parameter assay was able to measure both total and free PSA simultaneously using a simple mix and measure protocol. Correlation of this assay to a heterogeneous single parameter assay was excellent (above 0.99 for both) when spiked human plasma samples were used. However, due to the interference of the sample material, the obtained concentrations were slightly lower with the homogeneous than the heterogeneous assay, especially for the free PSA. To conclude, in this work two novel immunoassay principles were developed, which both are adaptable to other analytes. However, the hapten assay requires a rather good antibody with low dissociation rate and high affinity; whereas the dual-parameter assay principle is applicable whenever two immunometric complexes can form simultaneously, provided that the requirements of FRET are fulfilled.
Resumo:
The structural characterization of molecules used in the sterilization of blood for transfusions, such as crystal violet (CV), is relevant for understanding the action of these prophylactic drugs. The characterization is feasible by surface enhanced resonance Raman spectroscopy (SERRS) of CV in solution or on surfaces. The limit of detection of CV by SERRS, in the presence of colloidal particles, using 514.5 nm as excitation radiation, was found to be around 1 ppb. The characterization of CV was also made by SERS, by using different active-particles-containing substrates, proving the versatility of this technique for the study of such structures. The results suggest that the controlled production of highly efficient SERS-active substrates may allow qualitative and quantitative analysis, with high sensitivity, with potential applications in medical and environmental fields.
Resumo:
Synchronous machines with an AC converter are used mainly in large drives, for example in ship propulsion drives as well as in rolling mill drives in steel industry. These motors are used because of their high efficiency, high overload capacity and good performance in the field weakening area. Present day drives for electrically excited synchronous motors are equipped with position sensors. Most drives for electrically excited synchronous motors will be equipped with position sensors also in future. This kind of drives with good dynamics are mainly used in metal industry. Drives without a position sensor can be used e.g. in ship propulsion and in large pump and blower drives. Nowadays, these drives are equipped with a position sensor, too. The tendency is to avoid a position sensor if possible, since a sensor reduces the reliability of the drive and increases costs (latter is not very significant for large drives). A new control technique for a synchronous motor drive is a combination of the Direct Flux Linkage Control (DFLC) based on a voltage model and a supervising method (e.g. current model). This combination is called Direct Torque Control method (DTC). In the case of the position sensorless drive, the DTC can be implemented by using other supervising methods that keep the stator flux linkage origin centered. In this thesis, a method for the observation of the drift of the real stator flux linkage in the DTC drive is introduced. It is also shown how this method can be used as a supervising method that keeps the stator flux linkage origin centered in the case of the DTC. In the position sensorless case, a synchronous motor can be started up with the DTC control, when a method for the determination of the initial rotor position presented in this thesis is used. The load characteristics of such a drive are not very good at low rotational speeds. Furthermore, continuous operation at a zero speed and at a low rotational speed is not possible, which is partly due to the problems related to the flux linkage estimate. For operation in a low speed area, a stator current control method based on the DFLC modulator (DMCQ is presented. With the DMCC, it is possible to start up and operate a synchronous motor at a zero speed and at low rotational speeds in general. The DMCC is necessary in situations where high torque (e.g. nominal torque) is required at the starting moment, or if the motor runs several seconds at a zero speed or at a low speed range (up to 2 Hz). The behaviour of the described methods is shown with test results. The test results are presented for the direct flux linkage and torque controlled test drive system with a 14.5 kVA, four pole salient pole synchronous motor with a damper winding and electric excitation. The static accuracy of the drive is verified by measuring the torque in a static load operation, and the dynamics of the drive is proven in load transient tests. The performance of the drive concept presented in this work is sufficient e.g. for ship propulsion and for large pump drives. Furthermore, the developed methods are almost independent of the machine parameters.
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
Once the seed has germinated, the plant is forced to face all the environmental changes in its habitat. In order to survive, plants have evolved a number of different acclimation systems. The primary reaction behind plant growth and development is photosynthesis. Photosynthesis captures solar energy and converts it into chemical form. Photosynthesis in turn functions under the control of environmental cues, but is also affected by the growth, development, and metabolic state of a plant. The availability of solar energy fluctuates continuously, requiring non-stop adjustment of photosynthetic efficiency in order to maintain the balance between photosynthesis and the requirements and restrictions of plant metabolism. Tight regulation is required, not only to provide sufficient energy supply but also to prevent the damage caused by excess energy. The very first reaction of photosynthesis is splitting of water into the form of oxygen, hydrogen, and electrons. This most fundamental reaction of life is run by photosystem II (PSII), and the energy required for the reaction is collected by the light harvesting complex II (LHCII). Several proteins of the PSII-LHCII complex are reversibly phosphorylated according to the energy balance between photosynthesis and metabolism. Thylakoid protein phosphorylation has been under extensive investigation for over 30 years, yet the physiological role of phosphorylation remains elusive. Recently, the kinases behind the phosphorylation of PSII-LHCII proteins (STN7 and STN8) were identified and the knockout mutants of these kinases became available, providing powerful tools to elucidate the physiological role of PSII-LHCII phosphorylation. In my work I have used the stn7 and stn8 mutants in order to clarify the role of PSII-LHCII phosphorylation in regulation and protection of the photosynthetic machinery according to environmental cues. I show that STN7- dependent PSII-LHCII protein phosphorylation is required to balance the excitation energy distribution between PSII and PSI especially under low light intensities when the excitation energy transfer from LHC to PSII and PSI is efficient. This mechanism differs from traditional light quality-induced “state 1” – “state 2” transition and ensures fluent electron transfer from PSII to PSI under low light, yet having highest physiological relevance under fluctuating light intensity. STN8-dependent phosphorylation of PSII proteins, in turn, is required for fluent turn-over of photodamaged PSII complexes and has the highest importance upon prolonged exposure of the photosynthetic apparatus to excess light.
Resumo:
[RE(czb)3(H2O)2] complexes (where RE = Eu3+, Tb3+, Gd3+; and czb = 4-(9H-carbazol-9-yl)benzoato) have been synthesized and characterized. The Gd3+ complex was used to determine the triplet state energy of the czb ligand. Photoluminescence measurements of the complexes have been carried out under UV excitation. The Tb3+ complex exhibited a strong green luminescence indicating an efficient antenna effect, whereas the Eu3+ complex showed low red luminescence and the Gd3+ complex a blue-green luminescence from the ligand. The luminescence lifetimes and quantum yields have also been measured for the evaluation of the spectroscopic behavior of the complexes.
Resumo:
Quaternary ammonium salts are the corrosion inhibitors most frequently used by the oil industry. In this study, the ultraviolet fluorescence technique was evaluated for the analysis of a quaternary ammonium salt in water as a corrosion inhibitor. The comparison with standard salt showed that an alkyl aryl quaternary ammonium salt is the main fluorophore, with emission maxima at 306 and 593 nm. The best instrumental parameters were: width of excitation and emission slits of 10 and 15 nm, respectively, and scan rate of 10 nm min-1. The presence of aromatic compounds and biocides affects the analysis of corrosion inhibitors.
Resumo:
Potential energy and dipole moment curves for the HCl molecule were computed. Calculations were performed at different levels of theory (DFT, MRCI). Spectroscopic properties are reported and compared with experimental data, for validating the theoretical approaches. Interaction of infrared radiation with HCl is simulated using the wave packet formalism. The quantum control model for population dynamics of the vibrational levels, based on pi-pulse theory, is applied. The results demonstrate that wavepackets with specific composition can be built with short infrared laser pulses and provide the basis for studies of H + HCl collision dynamics with infrared laser excitation.