870 resultados para bird abundance
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
Resumo:
Aim The Neotropical parrots (Arini) are an unusually diverse group which colonized South America in the Oligocene. The newly invaded Neotropics may have functioned as an underused adaptive zone and provided novel ecological opportunities that facilitated diversification. Alternatively, diversification may have been driven by ecological changes caused by Andean uplift and/or climate change from the Miocene onwards. Our aim was to find out whether Arini diversified in a classical adaptive radiation after their colonization of South America, or whether their diversification occurred later and was influenced by more recent environmental change. Location Neotropics. Methods We generated a time-calibrated phylogeny of more than 80% of all Arini species in order to analyse lineage diversification. This chronogram was also used as the basis for the reconstruction of morphological evolution within Arini using a multivariate ratio analysis of three size measurements. Results We found a concentration of size evolution and partitioning of size niches in the early history of Arini consistent with the process of adaptive radia- tion, but there were no signs of an early burst of speciation or a decrease in speci- ation rates through time. Although we detected no overall temporal shifts in diversification rates, we discovered two young, unexpectedly species-rich clades. Main conclusions Arini show signs of an early adaptive radiation, but we found no evidence of the slowdown in speciation rate generally considered a feature of island or lake radiations. Historical processes and environmental change from the Miocene onwards may have kept diversification rates roughly constant ever since the colonization of the Neotropics. Thus, Arini may not yet have reached equilibrium diversity. The lack of diversity-dependent speciation might be a general feature of adaptive radiations on a continental scale, and diversification processes on continents might therefore not be as ecologically limited as in isolated lakes or on oceanic islands.
Resumo:
Recent improvements in the precision of mass spectrometric measurements have reduced the uncertainty of K-Ar and 39Ar-40Ar ages measured on geological materials. Now the major sources of uncertainty are the uncertainties on the 40K decay constant and the absolute abundance of 40K. In order to improve on this situation we determined the abundance of the 40K isotope in terrestrial standards. A ThermoFischer Triton+ thermal ionization mass spectrometer was used for K isotope ratio measurements of the NIST K standard reference materials SRM 918b and SRM 985. Ion beams were measured in Faraday cups with amplifiers equipped with 1E10, 1E11 and 1E12 Ω resistors. Three measurement protocols were used: (A) dynamic measurement with in-run fractionation correction by normalization to the IUPAC recommended isotope ratio 41K/39K = 0.0721677; (B) total evaporation; (C) a modified total evaporation with interblock baseline measurements. Different measurement protocols were combined with different loading procedures. The best results were obtained by loading samples on single tantalum filaments with 0.1M H3PO4. The total ion yields (ionization + transmission) were tested for the evaporation procedures (B) and (C) and ranged up to 48 %. The resulting best estimate for the 40K/39K ratio is 0.000 125 116 ± 57 (2σ), corresponding to 40K/K = (1.1668 ± 8; 2σ) x 10-4.
Resumo:
The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.
Resumo:
The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
Resumo:
Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes.
Resumo:
Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility-controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd-Pt-W isotope results from this study thus demonstrate that the relative magnitude of neutron capture-induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.
Resumo:
Ocean observing systems and satellites routinely collect a wealth of information on physical conditions in the ocean. With few exceptions, such as chlorophyll concentrations, information on biological properties is harder to measure autonomously. Here, we present a system to produce estimates of the distribution and abundance of the copepod Calanus finmarchicus in the Gulf of Maine. Our system uses satellite-based measurements of sea surface temperature and chlorophyll concentration to determine the developmental and reproductive rates of C. finmarchicus. The rate information then drives a population dynamics model of C. finmarchicus that is embedded in a 2-dimensional circulation field. The first generation of this system produces realistic information on interannual variability in C. finmarchicus distribution and abundance during the winter and spring. The model can also be used to identify key drivers of interannual variability in C. finmarchicus. Experiments with the model suggest that changes in initial conditions are overwhelmed by variability in growth rates after approximately 50 d. Temperature has the largest effect on growth rate. Elevated chlorophyll during the late winter can lead to increased C. finmarchicus abundance during the spring, but the effect of variations in chlorophyll concentrations is secondary to the other inputs. Our system could be used to provide real-time estimates or even forecasts of C. finmarchicus distribution. These estimates could then be used to support management of copepod predators such as herring and right whales.
Resumo:
In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.
Resumo:
Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the ‘nugget’, which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.