767 resultados para bioreactor landfill


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bamboo waste can be an alternative material to sustain the crescent demand for particleboards, also bringing ecological benefits as reduction of the pressure for raw materials and landfill space demands. In this context, this research aimed to manufacture and determine some physical and mechanical properties of particleboards with bamboo waste particles (Dendrocalamus giganteus), obtained from different sources, bonded with four different percentages of urea–formaldehyde (UF) based resin (6%, 8%, 10% and 12% related to dry material of particles). Response variables investigated were: density; moisture content; thickness swelling in 2 and 24 hours; water absorption in 2 and 24 hours; internal adhesion (STpe); strength in tension parallel to faces (STpa); modulus of elasticity (MOE) and modulus of rupture (MOR). Results permitted to conclude that particleboards as mentioned showed good performance only in the physical properties requirements imposed by Brazilian Standard NBR 14810, but this was not observed to mechanical properties considered. New researches are needed in order to optimize the producing process parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Planejamento e Análise de Políticas Públicas - FCHS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Outwitting Urban Beaver, by C. E. "Ki" Faulkner, Regional Director, Region 0, NADCA Bear Gets Attention in Southeast Chinese disease Threatens Rabbits Product Announcements: BEAR BE GONE™ -- a device designed to deter bears from foraging in trash cans. Booklet: "Using Guard Animals to Protect Livestock" Abstracts Published at the 3rd Annual Conference of The Wildlife Society: A case study of black bear movements and survival after landfill closure in the central Adirondacks, by Ann M. Russell and S.L. Simek Ecology of coyotes in a sheep ranching environment, by Ben N. Sacks, J.C.C. Neale, M. Jaeger, and D. R. McCullough Design and analysis of carnivore scent-station surveys, by Glen Sargeant, Douglas H. Johnson, and William Berg Public attitudes toward wildlife damage management, by Robert H. Schmidt, M.W. Brunson, andD. Reiter Human dimensions of wildlife contraception, by Robert H. Schmidt and D. E. Mclvor Economic assessment of rabies control efforts in Texas, by Randy M. Smith Methyl salicylate: a naturally occurring avian repellent, by Shirley Wager-Page A brief historical perspective on wildlife contraception research, by Robert J. Warren Wildlife-caused losses to agriculture in 1994, by Alice P. Wywialowski

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Planejamento e Análise de Políticas Públicas - FCHS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aliquat 336, a liquid hydrophobic material, was used at different concentrations (0.5-3.0%, w/v) as an additive in the preparation of encapsulated lipase from Bacillus sp. ITP-001 on sol-gel silica matrices using tetraethoxysilane (TEOS) as the precursor. The resulting hydrophobic matrices and immobilized lipases were characterized with regard to specific surface area (BET method), adsorption-desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption (BJH method) and scanning electron microscopy (SEM). The catalytic activities and the corresponding coupling yields were assayed in the hydrolysis of olive oil. In comparison with pure silica matrices, the immobilization process in the presence of Aliquat 336 decreased the values for specific surface area and increased the values for pore specific volume (Vp) and mean pore diameter (dp). This behavior may be related to the partial adsorption of the enzyme on the external surface of the hydrophobic matrix as indicated by scanning electron microscopy. Aliquat 336 concentrations in the range from 0.5 to 1.5% (w/v) provided immobilized derivatives with higher coupling yields and better substrate affinity. The highest coupling yield (Y-A = 71%) was obtained for the immobilized enzyme prepared in the presence of 1.5% Aliquat which gave the following morphological properties: specific surface area = 183 m(2)/g, pore specific volume (Vp) = 0.36 cc/g and mean pore diameter (dp)= 91 angstrom. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioenergetic analysis may be applied in order to predict microbial growth yields, based on the Gibbs energy dissipation and mass conservation principles of the overall growth reaction. The bioenergetics of the photoautotrophic growth of the cyanobacterium Arthrospira (Spirulina) platensis was investigated in different bioreactor configurations (tubular photobioreactor and open ponds) using different nitrogen sources (nitrate and urea) and under different light intensity conditions to determine the best growing conditions in terms of Gibbs energy dissipation, number of photons to sustain cell growth and phototrophic energy yields distribution in relation to the ATP and NADPH formation, and release of heat. Although an increase in the light intensity increased the Gibbs energy dissipated for cell growth and maintenance with both nitrogen sources, it did not exert any appreciable influence on the moles of photons absorbed by the system to produce one C-mol biomass. On the other hand, both bioenergetic parameters were higher in cultures with nitrate than with urea, likely because of the higher energy requirements needed to reduce the former nitrogen source to ammonia. They appreciably increased also when open ponds were substituted by the tubular photobioreactor, where a more efficient light distribution ensured a remarkably higher cell mass concentration. The estimated percentages of the energy absorbed by the cell showed that, compared with nitrate, the use of urea as nitrogen source allowed the system to address higher energy fractions to ATP production and light fixation by the photosynthetic apparatus, as well as a lower fraction released as heat. The best energy yields values on Gibbs energy necessary for cell growth and maintenance were achieved in up to 4-5 days of cultivation, indicating that it would be the optimum range to maintain cell growth. Thanks to this better bioenergetic situation, urea appears to be a quite promising low-cost, alternative nitrogen source for Arthrospira platensis cultures in photobioreactors. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on results obtained from experiments carried out in an acidogenic anaerobic reactor aiming at the optimization of hydrogen production by altering the degree of back-mixing. It was hypothesized that there is an optimum operating point that maximizes the hydrogen yield. Experiments were performed in a packed-bed bioreactor by covering a broad range of recycle ratios (R) and the optimum point was obtained for an R value of 0.6. In this operating condition the reactor behaved as 8 continuous stirred-tank reactors in series and the maximum yield was 4.22 mol H-2 mol sucrose(-1). Such optimum point was estimated by deriving a polynomial function fitted to experimental data and it was obtained as the conjugation of three factors related to the various degrees of back-mixing applied to the reactor: mass transfer from the bulk liquid to the biocatalyst, liquid-to-gas mass transfer and the kinetic behavior of irreversible reactions in series. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.