961 resultados para benthic invertebrates
Resumo:
Twenty-three sediment intervals from top of Site 650 down to 510 m below seafloor have been studied. Their thicknesses vary between 0.25 m and about 40 m. The studied deposits are turbidites or parts of them except one which is interpreted as an ash-fall layer. The composition of the turbidites signalizes sources from shallow water/coastal areas as well as from deep water levels. Repeated mobilization and displacement seems to have been common. Volcaniclastic material is the dominant component of the whole studied part of Site 650 sedimentary sequence. Ashfall deposits as well as normal open marine sediments are rare.
Resumo:
Three sites, drilled during Ocean Drilling Program (ODP) Leg 167, were chosen for detailed late Pleistocene paleoceanographic studies of intermediate water along the California margin. These sites are Site 1011 (Animal Basin, 31°17'N, 117°38'W, 2033 m water depth, 1600 m sill depth), Site 1012 (East Cortez Basin, 32°17'N, 118°23'W, 1783 m water depth, 1415 m sill depth), and Site 1018 (Guide Seamount, 36°59'N, 123°17'W, 2476 m water depth). Here we present carbon and oxygen isotopic measurements of benthic foraminifers from these three sites. We made 135 measurements from Site 1011, 387 measurements from Site 1012, and 231 measurements from Site 1018. This data report includes an explanation of the methods used to generate these isotopic records and the age models for each site. Detailed paleoceanographic interpretations of the isotopic records are currently under way.
Resumo:
The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.
Resumo:
Interannual environmental variability in Peru is dominated by the El Niño Southern Oscillation (ENSO). The most dramatic changes are associated with the warm El Niño (EN) phase (opposite the cold La Niña phase), which disrupts the normal coastal upwelling and affects the dynamics of many coastal marine and terrestrial resources. This study presents a trophic model for Sechura Bay, located at the northern extension of the Peruvian upwelling system, where ENSO-induced environmental variability is most extreme. Using an initial steady-state model for the year 1996, we explore the dynamics of the ecosystem through the year 2003 (including the strong EN of 1997/98 and the weaker EN of 2002/03). Based on support from literature, we force biomass of several non-trophically-mediated 'drivers' (e.g. Scallops, Benthic detritivores, Octopus, and Littoral fish) to observe whether the fit between historical and simulated changes (by the trophic model) is improved. The results indicate that the Sechura Bay Ecosystem is a relatively inefficient system from a community energetics point of view, likely due to the periodic perturbations of ENSO. A combination of high system productivity and low trophic level target species of invertebrates (i.e. scallops) and fish (i.e. anchoveta) results in high catches and an efficient fishery. The importance of environmental drivers is suggested, given the relatively small improvements in the fit of the simulation with the addition of trophic drivers on remaining functional groups' dynamics. An additional multivariate regression model is presented for the scallop Argopecten purpuratus, which demonstrates a significant correlation between both spawning stock size and riverine discharge-mediated mortality on catch levels. These results are discussed in the context of the appropriateness of trophodynamic modeling in relatively open systems, and how management strategies may be focused given the highly environmentally influenced marine resources of the region.