890 resultados para bending automat


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Classico), a microwave-polymerized (Onda-Cryl) and a autopolymerizing acrylic (Jet) resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 see, and manufacturing microwave cycle - 320W/3 min + OW/3 min + 720W/3 min); T(Classico, water bath cycle - 74 degrees C/9h) and Q (Jet, press chamber cycle - 50 degrees C/15 min at 2 bar). Ten specimens (65 x 10 x 3.3 mm) were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05) for flexural strength (MPa) (A = 106.97 +/- 5.31; B = 107.57 +/- 3.99; C = 109.63 +/- 5.19), and there were no significant differences among them. The heat-polymerized group (T) showed the lowest flexural strength means (84.40 +/- 1.68), and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Implant overdenture prostheses are prone to acrylic resin fracture because of space limitations around the implant overdenture components.Purpose. The purpose of this study was to evaluate the influence of E-glass fibers and acrylic resin thickness in resisting acrylic resin fracture around a simulated overdenture abutment.Material and methods. A model was developed to simulate the clinical situation of an implant overdenture abutment with varying acrylic resin thickness (1.5 or 3.0 mm) with or without E-glass fiber reinforcement. Forty-eight specimens with an underlying simulated abutment were divided into 4 groups (n=12): 1.5 mm acrylic resin without E-glass fibers identified as thin with no E-glass fiber mesh (TN-N); 1.5 mm acrylic resin with E-glass fibers identified as thin with E-glass fiber mesh (TN-F); 3.0 mm acrylic resin without E-glass fibers identified as thick without E-glass fiber mesh (TK-N); and 3.0 mm acrylic resin with E-glass fibers identified as thick with E-glass fiber mesh (TK-F). All specimens were submitted to a 3-point bending test and fracture loads (N) were analyzed with a 2-way ANOVA and Tukey's post hoc test (alpha=.05).Results. The results revealed significant differences in fracture load among the 4 groups, with significant effects from both thickness (P<.001) and inclusion of the mesh (P<.001). Results demonstrated no interaction between mesh and thickness (P=.690). The TN-N: 39 +/- 5 N; TN-F: 50 +/- 6.9 N; TK-N: 162 +/- 13 N; and TK-F: 193 +/- 21 N groups were all statistically different (P<.001).Conclusions. The fracture load of a processed, acrylic resin implant-supported overdenture can be significantly increased by the addition of E-glass fibers even when using thin acrylic resin sections. on a relative basis, the increase in fracture load was similar when adding E-glass fibers or increasing acrylic resin thickness. (J Prosthet Dent 2011;106:373-377)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Mechanical properties of the acrylic resins used for denture fabrication may be influenced by water and temperature. Thus, the aim of this study was to evaluate the effect of thermocycling on the flexural and impact strength of a high-impact (Lucitone 199) and a urethane-based denture material (Eclipse).Materials and methods: Flexural strength (64 x 10 x 3.3 mm) and impact strength (60 x 6 x 4 mm) specimens were made following the manufacturers' instructions and assigned to two groups (n = 10): control (C) - not thermocycled - and T - thermocycled (5000 cycles between 5 and 55 degrees C). Specimens were submitted to three-point bending and Charpy impact tests.Results: Flexural strength (MPa) and impact strength (kJ/m(2)) data were analysed with two-way ANOVA (p = 0.05). The flexural strength of material Eclipse (C, 136.5; T, 130.7) was significantly higher than that of resin Lucitone 550 (C, 99.4; T, 90.1). Material Eclipse exhibited significantly higher impact strength (C, 6.9; T, 5.3) than the resin Lucitone 550 (C, 3.5; T, 3.0). For both materials, a significant decrease in flexural and impact strengths was observed when the specimens were thermocycled.Conclusion: Flexural and impact strengths were higher for Eclipse than for Lucitone 550, in both groups. Thermocycling decreased the flexural and impact strengths of Eclipse and Lucitone 550.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective: The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods: Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results: The control group showed the best result (156.04 +/- 1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02 +/- 2.25 MPa), group 2 (36.21 +/- 1.20 MPa) and group 4 (6.74 +/- 0.85 MPa). Conclusion: All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the flexural strength of repairs made with autopolymerising acrylic resin after different treatments of joint surfaces.Material and Methods: Fifty rectangular specimens were made with heat-polymerised acrylic resin and 40 were repaired with autopolymerising acrylic resin following joint surface treatments: group 1 (intact specimens), group 2 (chemical treatment: wetting with methyl-methacrylate for 180 s), group 3 (abraded with silicon carbide paper), group 4 (abraded and wetting with methyl-methacrylate for 180 s) and group 5 (without surface treatment). The flexural strength was measured by a three-point bending test using a universal testing machine with a 100 Kgf load cell in the centre of repair at 5 mm/min cross-head speed. All data were analysed using one-way ANOVA and Tukey HSD test for multiple comparisons (p < 0.05).Results: Among repaired specimens, groups 2 and 4 had 66.53 +/- 3.4 and 69.38 +/- 1.8 MPa mean values and were similar. These groups had superior flexural strength than groups 3 and 5 that were similar and had 54.11 +/- 3.4 and 51.24 +/- 2.8 MPa mean values, respectively. Group 1 had a mean value of 108.30 +/- 2.8 MPa being the highest result.Conclusion: It can be concluded that the treatment of the joint surfaces with methyl-methacrylate increases the flexural strength of denture base repairs, although the strength is still lower than that observed for the intact denture base resin. Abrasion with sandpaper was not able to influence the flexural strength of repaired denture bases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudacteon wasmanni is a South American decapitating fly that parasitizes workers of Solenopsis fire ants. We used light microscopy (historesin serial-sectioning stained with Haematoxylin/Eosin) and scanning electron microscopy to show and analyze internal and whole external views of the female reproductive system. All specimens analyzed (n = 9) by light microscopy showed post-vitellogenic oocytes inside the ovaries. The lack of typical follicles (oocyte-nurse cell complexes) in all specimens suggests that oogenesis occurs during the pupal stage. The total number of eggs found ranged from 31 to 280 (X = 142 +/- 73, SD). The egg has a slugform or torpedo shape (about 130 by 20 mum) with a pointed apex at the posterior pole as defined by the fly; the micropyle appears to be in a depression or invagination at the anterior pole. An acute hypodermic-like ovipositor is evaginated from the hard sclerotized external genitalia during egg laying. The existence of a muscular bulb associated with the end of the common oviduct suggests that the egg is injected into the ant's body by a strong contraction of the bulb which probably is stimulated by bending of several ventral sensilla. During contraction, the abdomen extends out along a large fold between the sixth and seventh tergites in such a way that the sclerotized genitalia is rotated ventrally into a slightly anterior orientation in preparation for oviposition. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the novel application of digital curvature as a feature for morphological characterization and classification of landmark shapes. By inheriting several unique features of the continuous curvature, the digital curvature provides invariance to translations, rotations, local shape deformations, and is easily made tolerant to scaling. In addition, the bending energy, a global shape feature, can be directly estimated from the curvature values. The application of these features to analyse patterns of cranial morphological geographic differentiation in the rodent species Thrichomys apereoides has led to encouraging results, indicating a close correspondence between the geographical and morphological distributions. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the flexural strength of two fixed dental prosthesis (FDP) designs simulating frameworks of adhesive fixed partial prostheses, reinforced or not by glass fiber.Materials and Methods: Forty specimens, made with composite resin, were divided into 4 groups according to the framework design and the presence of fiber reinforcement: A1 - occlusal support; A2: occlusal support + glass fiber; B1: occlusal and proximal supports; B2: occlusal and proximal supports + glass fiber. The specimens were subjected to the three-point bending test, and the data were submitted to two-way ANOVA and Tukey's test (5%).Results: Group A2 (97.9 +/- 38 N) was statistically significantly different from all other experimental groups, presenting a significantly lower mean flexural strength.Conclusion: The use of glass fibers did not improve the flexural strength of composite resin, and designs with occlusal and proximal supports presented better results than designs simulating only occlusal support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To compare the flexural strength of two glass-infiltrated high-strength ceramics and two veneering glass-ceramics.Materials and Methods: Four ceramic materials were tested: two glass-infiltrated high-strength ceramics used as framework in metal-free restorations [In-Ceram Zirconia IZ (Gr1) and In-Ceram Alumina IA (Gr2)], and two glass-ceramics used as veneering material in metal-free restorations [Vita VM7 (Gr3) and Vitadur-alpha (Gr4)]. Bar specimens (25 x 5 x 2 mm(3)) made from core ceramics, alumina, and zirconia/alumina composites were prepared and applied to a silicone mold, which rested on a base from a gypsum die material. The IZ and IA specimens were partially sintered in an In-Ceram furnace according to the firing cycle of each material, and then were infiltrated with a low-viscosity glass to yield bar specimens of high density and strength. The Vita VM7 and Vitadur-alpha specimens were made from veneering materials, by vibration of slurry porcelain powder and condensation into a two-part brass Teflon matrix (25 x 5 x 2 mm(3)). Excess water was removed with absorbent paper. The veneering ceramic specimens were then removed from the matrix and were fired as recommended by the manufacturer. Another ceramic application and sintering were performed to compensate the contraction of the feldspar ceramic. The bar specimens were then tested in a three-point bending test.Results: The core materials (Gr1: 436.1 +/- 54.8; Gr2: 419.4 +/- 83.8) presented significantly higher flexural strength (MPa) than the veneer ceramics (Gr3: 63.5 +/- 9.9; Gr4: 57.8 +/- 12.7).Conclusion: In-Ceram Alumina and Zirconia were similar statistically and more resistant than VM7 and Vitadur-alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.