946 resultados para automatic data entry
Resumo:
Entry stairs and front door, with garden area beyond.
Resumo:
As seen from driveway.
Resumo:
As seen from front door stairs.
Resumo:
Entry from deck and seating area to outdoor room.
Resumo:
As seen from adjacent shed spaces, looking towards house and water beyond.
Resumo:
This study examined the test performance of distortion product otoacoustic emissions (DPOAEs) when used as a screening tool in the school setting. A total of 1003 children (mean age 6.2 years, SD = 0.4) were tested with pure-tone screening, tympanometry, and DPOAE assessment. Optimal DPOAE test performance was determined in comparison with pure-tone screening results using clinical decision analysis. The results showed hit rates of 0.86, 0.89, and 0.90, and false alarm rates of 0.52, 0.19, and 0.22 for criterion signal-to-noise ratio (SNR) values of 4, 5, and 11 dB at 1.1, 1.9, and 3.8 kHz respectively. DPOAE test performance was compromised at 1.1 kHz. In view of the different test performance characteristics across the frequencies, the use of a fixed SNR as a pass criterion for all frequencies in DPOAE assessments is not recommended. When compared to pure tone plus tympanometry results, the DPOAEs showed deterioration in test performance, suggesting that the use of DPOAEs alone might miss children with subtle middle ear dysfunction. However, when the results of a test protocol, which incorporates both DPOAEs and tympanometry, were used in comparison with the gold standard of pure-tone screening plus tympanometry, test performance was enhanced. In view of its high performance, the use of a protocol that includes both DPOAEs and tympanometry holds promise as a useful tool in the hearing screening of schoolchildren, including difficult-to-test children.
Resumo:
This document records the process of migrating eprints.org data to a Fez repository. Fez is a Web-based digital repository and workflow management system based on Fedora (http://www.fedora.info/). At the time of migration, the University of Queensland Library was using EPrints 2.2.1 [pepper] for its ePrintsUQ repository. Once we began to develop Fez, we did not upgrade to later versions of eprints.org software since we knew we would be migrating data from ePrintsUQ to the Fez-based UQ eSpace. Since this document records our experiences of migration from an earlier version of eprints.org, anyone seeking to migrate eprints.org data into a Fez repository might encounter some small differences. Moving UQ publication data from an eprints.org repository into a Fez repository (hereafter called UQ eSpace (http://espace.uq.edu.au/) was part of a plan to integrate metadata (and, in some cases, full texts) about all UQ research outputs, including theses, images, multimedia and datasets, in a single repository. This tied in with the plan to identify and capture the research output of a single institution, the main task of the eScholarshipUQ testbed for the Australian Partnership for Sustainable Repositories project (http://www.apsr.edu.au/). The migration could not occur at UQ until the functionality in Fez was at least equal to that of the existing ePrintsUQ repository. Accordingly, as Fez development occurred throughout 2006, a list of eprints.org functionality not currently supported in Fez was created so that programming of such development could be planned for and implemented.
Resumo:
The detection of seizure in the newborn is a critical aspect of neurological research. Current automatic detection techniques are difficult to assess due to the problems associated with acquiring and labelling newborn electroencephalogram (EEG) data. A realistic model for newborn EEG would allow confident development, assessment and comparison of these detection techniques. This paper presents a model for newborn EEG that accounts for its self-similar and non-stationary nature. The model consists of background and seizure sub-models. The newborn EEG background model is based on the short-time power spectrum with a time-varying power law. The relationship between the fractal dimension and the power law of a power spectrum is utilized for accurate estimation of the short-time power law exponent. The newborn EEG seizure model is based on a well-known time-frequency signal model. This model addresses all significant time-frequency characteristics of newborn EEG seizure which include; multiple components or harmonics, piecewise linear instantaneous frequency laws and harmonic amplitude modulation. Estimates of the parameters of both models are shown to be random and are modelled using the data from a total of 500 background epochs and 204 seizure epochs. The newborn EEG background and seizure models are validated against real newborn EEG data using the correlation coefficient. The results show that the output of the proposed models has a higher correlation with real newborn EEG than currently accepted models (a 10% and 38% improvement for background and seizure models, respectively).
Resumo:
The final-year project for Mechanical & Space Engineering students at UQ often involves the design and flight testing of an experiment. This report describes the design and use of a simple data logger that should be suitable for collecting data from the students' flight experiments. The exercise here was taken as far as the construction of a prototype device that is suitable for ground-based testing, say, the static firing of a hybrid rocket motor.
Resumo:
A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.
Resumo:
This paper reports a comparative study of Australian and New Zealand leadership attributes, based on the GLOBE (Global Leadership and Organizational Behavior Effectiveness) program. Responses from 344 Australian managers and 184 New Zealand managers in three industries were analyzed using exploratory and confirmatory factor analysis. Results supported some of the etic leadership dimensions identified in the GLOBE study, but also found some emic dimensions of leadership for each country. An interesting finding of the study was that the New Zealand data fitted the Australian model, but not vice versa, suggesting asymmetric perceptions of leadership in the two countries.
Resumo:
In the context of cancer diagnosis and treatment, we consider the problem of constructing an accurate prediction rule on the basis of a relatively small number of tumor tissue samples of known type containing the expression data on very many (possibly thousands) genes. Recently, results have been presented in the literature suggesting that it is possible to construct a prediction rule from only a few genes such that it has a negligible prediction error rate. However, in these results the test error or the leave-one-out cross-validated error is calculated without allowance for the selection bias. There is no allowance because the rule is either tested on tissue samples that were used in the first instance to select the genes being used in the rule or because the cross-validation of the rule is not external to the selection process; that is, gene selection is not performed in training the rule at each stage of the cross-validation process. We describe how in practice the selection bias can be assessed and corrected for by either performing a cross-validation or applying the bootstrap external to the selection process. We recommend using 10-fold rather than leave-one-out cross-validation, and concerning the bootstrap, we suggest using the so-called. 632+ bootstrap error estimate designed to handle overfitted prediction rules. Using two published data sets, we demonstrate that when correction is made for the selection bias, the cross-validated error is no longer zero for a subset of only a few genes.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).