923 resultados para argon
Resumo:
The Yamato Basin basement in the Sea of Japan was drilled below the sediment pile during Legs 127 and 128. Two superposed volcanic complexes are distinguished. The upper complex consists of continental tholeiite sills dated around 20-18 Ma and attributed to the rifting stage of the backarc basin. The lower complex consists of backarc basin basalts probably intruded below the upper complex during the spreading stage. Trace-element compositions and Sr and Nd isotopic signatures may be explained by mixing of at least two end members with a very small addition of crustal and subducted sediment component. Thus, upwelling of mantle diapir occurred during the rifting stage. Contribution of the depleted mantle increased in the spreading stage. The Neogene magmatic history of the Japan Sea is reviewed in the light of the ODP new data.
Resumo:
Helium isotope composition as an indicator of the mantle-derived component was studied in gases from mineral springs, stratal waters, and mud volcanoes developed west of the Teberda River valley (10 objects) and two springs in the central segment of the Greater Caucasus orogen between the active El'brus and Kazbek volcanoes. In the western segment of the orogen ratios of 3He/4He = R_corr vary from 46x10**-8 to 114x10**-8 (from 0.33 to 0.81 R_atm, where R_atm = 1.4x10**-6 is the atmospheric ratio). They are substantially lower relative to ratios in the vicinity of El'brus and Kazbek and close to those in samples from the central segment (from 70x10**-8 to 134x10**-8 (from 0.50 to 0.96 R_atm), as well as to ratios previously recorded in the Caucasian Mineral Waters (CMW) area. Moreover, concentration of 3He in them is notably higher than its crustal radiogenic level characteristic of mud volcanoes in the Taman Peninsula, where 3He/4He varies from 1.4x10**-8 to 2.8x10**-8 (from 0.01 to 0.02 R_atm). Nitrogen-methane gas from northern piedmonts of the western Caucasus also contains nonatmogenic components including radiogenic 40Ar (40Ar/36Ar = 900), excessive nitrogen (~87% of total N2 concentration in sample) and mantle He. These data specify distribution of mantle derivates along the orogen strike and age of intrusive magmatic activity in its different segments.
Resumo:
Comprehensive geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus Volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. Volcanic activity of Elbrus is subdivided into three phases: Middle Neopleistocene (225-170 ka), Late Neopleistocene (110-70 ka), and Late Neopleistocene - Holocene (earlier than 35 ka). Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle "Caucasus" source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041+/-0.0001, e-Nd = +4.1+/-0.2, 147Sm/144Nd = 0.105-0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. Temporal evolution of isotope characteristics for lavas of the Elbrus Volcano is well described by a Sr-Nd mixing hyperbole between "Caucasus" source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, proportions of mantle material in parental magmas of Elbrus gently increased: from ~60% at the Middle-Neopleistocene phase of activity to ~80% at the Late Neopleistocene - Holocene phase, which indicates an increase of activity of a deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene - Holocene phase, increasing contribution of the deep-seated mantle source in genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity continued.
Resumo:
The paper reports newly obtained stratigraphic, petrographic, and isotope geochronology data on modern moderately acid lavas from the Keli Highland of the Greater Caucasus and presents a geological map of the territory, in which 35 volcanoes active in Late Quaternary time were documented by the authors. Total duration of volcanic activity at the highland was estimated at 250 ka. Volcanic activity was discrete and occurred in three phases: Middle Neopleistocene (245-170 ka), Late Neopleistocene (135-70 ka), and Late Neopleistocene-Holocene (<30 ka). Newly obtained lines of evidence indicate that certain volcanoes erupted in the latest Neopleistocene-Holocene. The first phase of volcanic activity was connected mainly with lava volcanoes, and eruptions during the later phases of volcanic activity in this part of the Greater Caucasus produced mainly lavas. The most significant eruptions are demonstrated to occur in the territory during the second phase. The major evolutionary trends of volcanic processes during the final phase in the Keli Highland are determined. It was also determined that overwhelming majority of volcanoes that were active less than 30 ka BP are spatially restricted to long-liven local magmatic zones, which were active during either all three or only the final two phases of activity. These parts of the territory are, perhaps, the most hazardous in terms of volcanic activity.
Resumo:
New K-Ar datings of Meso-Cenozoic volcanites from the Sea of Japan and the Sea of Okhotsk were obtained. They enabled to reason age of different volcanic complexes. Basalts from volcanic edifices of the Sea of Japan Basin were determined as Middle Miocene - Pliocene (13.1-4.5 Ma) in age, which correlates well with geological evolution of the Sea of Japan. New datings for basalts from the continental slope of the South Primorye (11.1 Ma) confirm their age being similar to volcanites from Neogene basalt plateaus of the South Primorye; they are very similar not only in age but also in mineral and chemical compositions. Datings for rocks from the andesite series of the Northern Yamato Rise (24.7, 21.5 Ma) show that they are coeval with volcanites of the trachyandesite complex; this allows to combine them into one Oligocene - Early Miocene complex. In the Sea of Okhotsk datings of volcanite samples from three complexes were obtained: Cretaceous, Paleogene, and Pliocene-Pleistocene. Cretaceous magmatic rocks make part of basements of large rises in the Sea of Okhotsk, and Paleogene and Pliocene - Pleistocene complexes illustrate stages of Cenozoic tectono-magmatic activation of the region.
Resumo:
The thick oceanic crust of the Caribbean plate appears to be the tectonized remnant of an eastern Pacific oceanic plateau that has been inserted between North and South America. The emplacement of the plateau into its present position has resulted in the obduction and exposure of its margins, providing an opportunity to study the age relations, internal structure and compositional features of the plateau. We present the results of 40Ar-39Ar radiometric dating, major-, trace-element, and isotopic compositions of basalts from some of the exposed sections as well as drill core basalt samples from Leg 15 of the Deep Sea Drilling Project. Five widely spaced, margin sections yielded ages ranging from 91 to 88 Ma. Less well-constrained radiometric ages from the drill cores, combined with the biostratigraphic age of surrounding sediments indicate a minimum crystallization age of ~90 Ma in the Venezuelan Basin. The synchroneity of ages across the region is consistent with a flood basalt origin for the bulk of the Caribbean plateau i.e., large volume, rapidly erupted, regionally extensive volcanism.. The ages and compositions are also consistent with plate reconstructions that place the Caribbean plateau in the vicinity of the Galápagos hotspot at its inception. The trace-element and isotopic compositions of the ~90 Ma rocks indicate a depleted mantle and an enriched, plume-like mantle were involved in melting to varying degrees across the plateau. Within the same region, a volumetrically secondary, but widespread magmatic event occurred at 76 Ma, as is evident in Curacao, western Colombia, Haiti, and at DSDP Site 152/ODP Site 1001 near the Hess Escarpment. Limited trace-element data indicate that this phase of magmatism was generally more depleted than the first. We speculate that magmatism may have resulted from upwelling of mantle, still hot from the 90 Ma event, during lithospheric extension attending gravitational collapse of the plateau, andror tectonic emplacement of the plateau between North and South America. Still younger volcanics are found in the Dominican Republic (69 Ma) and the Quepos Peninsula of Costa Rica (63 Ma). The latter occurrence conceivably formed over the Galápagos hotspot and subsequently accreted to the western edge of the plateau during subduction of the Farallon plate.