940 resultados para approximate entropy
Resumo:
The buffer allocation problem (BAP) is a well-known difficult problem in the design of production lines. We present a stochastic algorithm for solving the BAP, based on the cross-entropy method, a new paradigm for stochastic optimization. The algorithm involves the following iterative steps: (a) the generation of buffer allocations according to a certain random mechanism, followed by (b) the modification of this mechanism on the basis of cross-entropy minimization. Through various numerical experiments we demonstrate the efficiency of the proposed algorithm and show that the method can quickly generate (near-)optimal buffer allocations for fairly large production lines.
Resumo:
We consider the problem of estimating P(Yi + (...) + Y-n > x) by importance sampling when the Yi are i.i.d. and heavy-tailed. The idea is to exploit the cross-entropy method as a toot for choosing good parameters in the importance sampling distribution; in doing so, we use the asymptotic description that given P(Y-1 + (...) + Y-n > x), n - 1 of the Yi have distribution F and one the conditional distribution of Y given Y > x. We show in some specific parametric examples (Pareto and Weibull) how this leads to precise answers which, as demonstrated numerically, are close to being variance minimal within the parametric class under consideration. Related problems for M/G/l and GI/G/l queues are also discussed.
Resumo:
Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.
Resumo:
In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.
Resumo:
We present theoretical predictions for the equation of state of a harmonically trapped Fermi gas in the unitary limit. Our calculations compare Monte Carlo results with the equation of state of a uniform gas using three distinct perturbation schemes. We show that in experiments the temperature can be usefully calibrated by making use of the entropy, which is invariant during an adiabatic conversion into the weakly interacting limit of molecular BEC. We predict the entropy dependence of the equation of state.
Resumo:
This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001
Resumo:
In this paper we propose a fast adaptive Importance Sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum Cross-Entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
Minimization of a sum-of-squares or cross-entropy error function leads to network outputs which approximate the conditional averages of the target data, conditioned on the input vector. For classifications problems, with a suitably chosen target coding scheme, these averages represent the posterior probabilities of class membership, and so can be regarded as optimal. For problems involving the prediction of continuous variables, however, the conditional averages provide only a very limited description of the properties of the target variables. This is particularly true for problems in which the mapping to be learned is multi-valued, as often arises in the solution of inverse problems, since the average of several correct target values is not necessarily itself a correct value. In order to obtain a complete description of the data, for the purposes of predicting the outputs corresponding to new input vectors, we must model the conditional probability distribution of the target data, again conditioned on the input vector. In this paper we introduce a new class of network models obtained by combining a conventional neural network with a mixture density model. The complete system is called a Mixture Density Network, and can in principle represent arbitrary conditional probability distributions in the same way that a conventional neural network can represent arbitrary functions. We demonstrate the effectiveness of Mixture Density Networks using both a toy problem and a problem involving robot inverse kinematics.
Resumo:
Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
There has been much recent research into extracting useful diagnostic features from the electrocardiogram with numerous studies claiming impressive results. However, the robustness and consistency of the methods employed in these studies is rarely, if ever, mentioned. Hence, we propose two new methods; a biologically motivated time series derived from consecutive P-wave durations, and a mathematically motivated regularity measure. We investigate the robustness of these two methods when compared with current corresponding methods. We find that the new time series performs admirably as a compliment to the current method and the new regularity measure consistently outperforms the current measure in numerous tests on real and synthetic data.
Resumo:
To carry out stability and voltage regulation studies on more electric aircraft systems in which there is a preponderance of multi-pulse, rectifier-fed motor-drive equipment, average dynamic models of the rectifier converters are required. Existing methods are difficult to apply to anything other than single converters with a low pulse number. Therefore an efficient, compact method for deriving the approximate, linear, average model of 6- and 12-pulse rectifiers, based on the assumption of a small duration of the overlap angle is presented. The models are validated against detailed simulations and laboratory prototypes.
Resumo:
In this study, a new entropy measure known as kernel entropy (KerEnt), which quantifies the irregularity in a series, was applied to nocturnal oxygen saturation (SaO 2) recordings. A total of 96 subjects suspected of suffering from sleep apnea-hypopnea syndrome (SAHS) took part in the study: 32 SAHS-negative and 64 SAHS-positive subjects. Their SaO 2 signals were separately processed by means of KerEnt. Our results show that a higher degree of irregularity is associated to SAHS-positive subjects. Statistical analysis revealed significant differences between the KerEnt values of SAHS-negative and SAHS-positive groups. The diagnostic utility of this parameter was studied by means of receiver operating characteristic (ROC) analysis. A classification accuracy of 81.25% (81.25% sensitivity and 81.25% specificity) was achieved. Repeated apneas during sleep increase irregularity in SaO 2 data. This effect can be measured by KerEnt in order to detect SAHS. This non-linear measure can provide useful information for the development of alternative diagnostic techniques in order to reduce the demand for conventional polysomnography (PSG). © 2011 IEEE.