883 resultados para alginate gel microspheres, aerosols, lysozyme, insulin, protein release, bioactivity, ARCHITECT assay
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
Glycation, oxidation, and browning of proteins have all been implicated in the development of diabetic complications. We measured the initial Amadori adduct, fructoselysine (FL); two Maillard products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine; and fluorescence (excitation = 328 nm, emission = 378 nm) in skin collagen from 39 type 1 diabetic patients (aged 41.5 +/- 15.3 [17-73] yr; duration of diabetes 17.9 +/- 11.5 [0-46] yr, [mean +/- SD, range]). The measurements were related to the presence of background (n = 9) or proliferative (n = 16) retinopathy; early nephropathy (24-h albumin excretion rate [AER24] > or = 20 micrograms/min; n = 9); and limited joint mobility (LJM; n = 20). FL, CML, pentosidine, and fluorescence increased progressively across diabetic retinopathy (P <0.05, P <0.001, P <0.05, P <0.01, respectively). FL, CML, pentosidine, and fluorescence were also elevated in patients with early nephropathy (P <0.05, P <0.001, P <0.01, P <0.01, respectively). There was no association with LJM. Controlling for age, sex, and duration of diabetes using logistic regression, FL and CML were independently associated with retinopathy (FL odds ratio (OR) = 1.06, 95% confidence interval (CI) = 1.01-1.12, P <0.05; CML OR = 6.77, 95% CI = 1.33-34.56, P <0.05) and with early nephropathy (FL OR = 1.05, 95% CI = 1.01-1.10, P <0.05; CML OR = 13.44, 95% CI = 2.00-93.30, P <0.01). The associations between fluorescence and retinopathy and between pentosidine and nephropathy approached significance (P = 0.05). These data show that FL and Maillard products in skin correlate with functional abnormalities in other tissues and suggest that protein glycation and oxidation (glycoxidation) may be implicated in the development of diabetic retinopathy and early nephropathy.
Resumo:
Glycation, oxidation, and nonenzymatic browning of protein have all been implicated in the development of diabetic complications. The initial product of glycation of protein, fructoselysine (FL), undergoes further reactions, yielding a complex mixture of browning products, including the fluorescent lysine-arginine cross-link, pentosidine. Alternatively, FL may be cleaved oxidatively to form N(epsilon)-(carboxymethyl)lysine (CML), while glycated hydroxylysine, an amino-acid unique to collagen, may yield N(epsilon)-(carboxymethyl)hydroxylysine (CMhL). We have measured FL, pentosidine, fluorescence (excitation = 328 nm, emission = 378 nm), CML, and CMhL in insoluble skin collagen from 14 insulin-dependent diabetic patients before and after a 4-mo period of intensive therapy to improve glycemic control. Mean home blood glucose fell from 8.7 +/- 2.5 (mean +/- 1 SD) to 6.8 +/- 1.4 mM (P less than 0.005), and mean glycated hemoglobin (HbA1) from 11.6 +/- 2.3% to 8.3 +/- 1.1% (P less than 0.001). These changes were accompanied by a significant decrease in glycation of skin collagen, from 13.2 +/- 4.3 to 10.6 +/- 2.3 mmol FL/mol lysine (P less than 0.002). However, levels of browning and oxidation products (pentosidine, CML, and CMhL) and fluorescence were unchanged. These results show that the glycation of long-lived proteins can be decreased by improved glycemic control, but suggest that once cumulative damage to collagen by browning and oxidation reactions has occurred, it may not be readily reversed. Thus, in diabetic patients, institution and maintenance of good glycemic control at any time could potentially limit the extent of subsequent long-term damage to proteins by glycation and oxidation reactions.
Resumo:
The very low- and low-density lipoprotein fractions were isolated from 16 normolipidaemic Type 2 (non-insulin-dependent) diabetic patients in good to fair glycaemic control and from corresponding age-, sex-, and race-matched, non-diabetic control subjects. Rates of cholesteryl ester synthesis averaged 268 +/- 31 vs 289 +/- 40 pmol 14C-cholesteryl oleate.mg cell protein-1.20 h-1 for very low- and 506 +/- 34 vs 556 +/- 51 pmol 14C-cholesteryl oleate.mg cell protein-1.20 h-1 for low-density lipoproteins isolated from the Type 2 diabetic patients and control subjects, respectively, when they were incubated with human macrophages. A group of approximately one-third of the patients was selected for separate analyses because very low-density lipoproteins isolated from these patients did stimulate more cholesteryl ester synthesis when incubated with macrophages. There were no significant differences in the lipid composition of the lipoproteins isolated from the three groups of subjects. The relative proportion of apoprotein C to apoprotein E was significantly decreased (p less than 0.002) in the very low-density lipoproteins from diabetic patients and was further decreased in samples from these selected diabetic patients. The apoprotein C-I content of very low-density lipoproteins isolated from diabetic patients was increased compared to control subjects and was further increased in samples from the selected diabetic patients (p less than 0.02). There were no significant differences in the proportions of apoproteins C-III-0, C-III-1, or C-III-2 among the three groups. These studies suggest that in normolipidaemic Type 2 diabetic patients, the apoprotein composition of VLDL is abnormal and this may alter VLDL macrophage interactions and thus contribute to the increased prevalence of atherosclerosis in diabetic patients.
Resumo:
Very-low-density lipoproteins (VLDL) (density less than 1.006 g/mL) were isolated from type I (insulin-dependent) diabetic patients in good to fair glycemic control and from age-, sex-, and race-matched, nondiabetic, control subjects. VLDL were incubated with human, monocyte-derived macrophages obtained from nondiabetic donors, and the rates of cellular cholesteryl ester synthesis and cholesterol accumulation were determined. VLDL isolated from diabetic patients stimulated significantly more cholesteryl ester synthesis than did VLDL isolated from control subjects (4.04 +/- 1.01 v 1.99 +/- 0.39 nmol 14C-cholesteryl oleate synthesized/mg cell protein/20 h; mean +/- SEM, P less than .05). The stimulation of cholesteryl ester synthesis in macrophages incubated with VLDL isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (P less than .05). The increase in cholesteryl ester synthesis and accumulation in macrophages were mediated by a significant increase in the receptor mediated, high affinity degradation (2.55 +/- 0.23 v 2.12 +/- 0.20 micrograms degraded/mg cell protein/20 h) and accumulation (283 +/- 35 v 242 +/- 33 ng/mg cell protein/20 h) of 125I-VLDL isolated from diabetic patients compared with VLDL from control subjects. To determine if changes in VLDL apoprotein composition were responsible for the observed changes in cellular rates of cholesteryl ester synthesis and accumulation, we also examined the apoprotein composition of the VLDL from both groups. There were no significant differences between the apoproteins B, E, and C content of VLDL from both groups. We also determined the chemical composition of VLDL isolated from both groups of subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Diabetes mellitus is an independent risk factor in the development of atherosclerosis. In this study we aimed to demonstrate whether there is an abnormal interaction between low-density lipoproteins from diabetic patients and human macrophages. We measured cholesteryl ester synthesis and cholesteryl ester accumulation in human monocyte-derived macrophages (obtained from non-diabetic donors) incubated with low density lipoproteins from Type 1 (insulin-dependent) diabetic patients in good or fair glycaemic control. Low density lipoproteins from the diabetic patients stimulated more cholesteryl ester synthesis than low density lipoproteins from non-diabetic control subjects (7.19 +/- 1.19 vs 6.11 +/- 0.94 nmol/mg cell protein/20 h, mean +/- SEM, p less than 0.05). The stimulation of cholesteryl ester synthesis by low density lipoproteins isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (p less than 0.02). There were no significant differences in the lipid composition of low density lipoproteins between the diabetic and control groups. Non-enzymatic glycosylation of low density lipoproteins was higher in the diabetic group (p less than 0.01) and correlated significantly with cholesteryl ester synthesis (r = 0.58). Similarly, low-density lipoproteins obtained from non-diabetic subjects and glycosylated in vitro stimulated more cholesteryl ester synthesis in macrophages than control low density lipoproteins. The increase in cholesteryl ester synthesis and accumulation by cells exposed to low density lipoproteins from diabetic patients seems to be mediated by an increased uptake of these lipoproteins by macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Forearm skin biopsies were obtained from diabetic subjects with and without limited joint mobility, and from non-diabetic control subjects. Collagen purified from these samples was assayed for non-enzymatic glycosylation. The level in all diabetic patients was significantly greater than that in control subjects (p less than 0.001), but those diabetic patients with limited joint mobility had a level of collagen glycosylation similar to that in those with normal joints (15.3 +/- 1.3 and 16.5 +/- 1.3 nmol fructose/10 mg protein, respectively; mean +/- SEM). Glycosylation of collagen in the diabetic patients correlated with glycosylated haemoglobin measured at the time of skin biopsy (r = 0.60). These results do not support the hypothesis that non-enzymatic glycosylation of collagen, as reflected by the ketoamine link, plays an important role in the development of limited joint mobility in diabetes.
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) is the most common rheumatological disease of childhood with a prevalence of around 1 in 1000. Without appropriate treatment it can have devastating consequences including permanent disability from joint destruction and growth deformities. Disease aetiology remains unknown. Investigation of disease pathology at the level of the synovial membrane is required if we want to begin to understand the disease at the molecular and biochemical level. The synovial membrane proteome from early disease-stage, treatment naive JIA patients was compared between polyarticular and oligoarticular subgroups.
Methods: Protein was extracted from 15 newly diagnosed, treatment naive JIA synovial membrane biopsies and separated by two dimensional fluorescent difference in-gel electrophoresis. Proteins displaying a two-fold or greater change in expression levels between the two subgroups were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry with expression further verified by Western blotting and immunohistochemistry.
Results: Analysis of variance analysis (P <= 0.05) revealed 25 protein spots with a two-fold or greater difference in expression levels between polyarticular and oligoarticular patients. Hierarchical cluster analysis with Pearson ranked correlation revealed two distinctive clusters of proteins. Some of the proteins that were differentially expressed included: integrin alpha 2b (P = 0.04); fibrinogen D fragment (P =0.005); collagen type VI (P = 0.03); fibrinogen gamma chain (P = 0.05) and peroxiredoxin 2 (P = 0.02). The identified proteins are involved in a number of different processes including platelet activation and the coagulation system.
Conclusions: The data indicates distinct synovial membrane proteome profiles between JIA subgroups at an early stage in the disease process. The identified proteins also provide insight into differentially perturbed pathways which could influence pathological events at the joint level.
Resumo:
Arachidonic acid release in cells highly over expressing cytosolic phospholipase A2 has been attributed to mitogen-activated protein kinase phosphorylation of cytosolic phospholipase A2 on serine-505. To investigate the role of cytosolic phospholipase A2 in cellular physiology, we attempted to inhibit cytosolic phospholipase A2 in the intact cell employing an antisense RNA strategy. Swiss 3T3 cells were stably transfected with an antisense cytosolic phospholipase A2 expression vector. A clone of cells with reduced immunodetectable cytosolic phospholipase A2, compared to a vector transfected cell line, was identified by Western blotting and a corresponding decrease in phospholipase A2 activity was confirmed by enzymatic assay in cell free extracts. However, arachidonic acid release from intact cells in response to agonists was not different between antisense and control cell lines. Thus, arachidonic acid release in intact cells with decreased cytosolic phospholipase A2 activity is likely to be modulated by rate limiting factors that are extrinsic to cytosolic phospholipase A2.
Resumo:
The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.
Resumo:
Sex hormone binding globulin (SHBG) is a glycoprotein composed of two 373-amino-acid subunits. The SHBG gene and a promotor region have been identified. The SHBG receptor has yet to be cloned but is known to act through a G-protein-linked second-messenger system following plasma membrane binding. The principal function of SHBG has traditionally been considered to be that of a transport protein for sex steroids, regulating circulating concentrations of free (unbound) hormones and their transport to target tissues. Recent research suggests that SHBG has functions in addition to the binding and transport of sex steroids. Observational studies have associated a low SHBG concentration with an increased incidence of type 2 diabetes mellitus (DM) independent of sex hormone levels in men and women. Genetic studies using Mendelian randomization analysis linking three single nucleotide polymorphisms of the SHBG gene to risk of developing type 2 DM suggest SHBG may have a role in the pathogenesis of type 2 DM. The correlation between SHBG and insulin resistance that is evident in a number of cross-sectional studies is in keeping with the suggestion that the association between SHBG and incidence of type 2 DM is explained by insulin resistance. Several potential mechanisms may account for this association, including the identification of dietary factors that influence SHBG gene transcription. Further research to characterize the SHBG-receptor and the SHBG second messenger system is required. An interventional study examining the effects on insulin resistance of altering SHBG concentrations may help in determining whether this association is causal.
Resumo:
The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.
Resumo:
Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).
Resumo:
Gels obtained by complexation of octablock star polyethylene oxide/polypropylene oxide copolymers (Tetronic 90R4) with -cyclodextrin (-CD) were evaluated as matrices for drug release. Both molecules are biocompatible so they can be potentially applied to drug delivery systems. Two different types of matrices of Tetronic 90R4 and -CD were evaluated: gels and tablets. These gels are capable to gelifying in situ and show sustained erosion kinetics in aqueous media. Tablets were prepared by freeze-drying and comprising the gels. Using these two different matrices, the release of two model molecules, L-tryptophan (Trp), and a protein, bovine serum albumin (BSA), was evaluated. The release profiles of these molecules from gels and tablets prove that they are suitable for sustained delivery. Mathematical models were applied to the release curves from tablets to elucidate the drug delivery mechanism. Good correlations were found for the fittings of the release curves to different equations. The results point that the release of Trp from different tablets is always governed by Fickian diffusion, whereas the release of BSA is governed by a combination of diffusion and tablet erosion.
Resumo: