970 resultados para airway smooth muscle
Resumo:
The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.
Resumo:
We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM) and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM) the levels of lactate dehydrogenase (LDH) released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM). We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.
Resumo:
We studied the relationship between alpha- and beta-adrenergic agonists and the activity of carbonic anhydrase I and II in erythrocyte, clinical and vessel studies. Kinetic studies were performed. Adrenergic agonists increased erythrocyte carbonic anhydrase as follows: adrenaline by 75%, noradrenaline by 68%, isoprenaline by 55%, and orciprenaline by 62%. The kinetic data indicated a non-competitive mechanism of action. In clinical studies carbonic anhydrase I from erythrocytes increased by 87% after noradrenaline administration, by 71% after orciprenaline and by 82% after isoprenaline. The increase in carbonic anhydrase I paralleled the increase in blood pressure. Similar results were obtained in vessel studies on piglet vascular smooth muscle. We believe that adrenergic agonists may have a dual mechanism of action: the first one consists of a catecholamine action on its receptor with the formation of a stimulus-receptor complex. The second mechanism proposed completes the first one. By this second component of the mechanism, the same stimulus directly acts on the carbonic anhydrase I isozyme (that might be functionally coupled with adrenergic receptors), so that its activation ensures an adequate pH for stimulus-receptor coupling for signal transduction into the cell, resulting in vasoconstriction.
Resumo:
We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10) or 20 µM and Emax of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 µM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM), a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM) or ODQ (1 µM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM), a VIP receptor antagonist, significantly inhibited (37 ± 7%) relaxation induced by gentisic acid, whereas CGRP (8-37) (0.1 µM), a CGRP antagonist, only slightly enhanced the action of gentisic acid. Taken together, these results provide functional evidence for the direct activation of voltage and large-conductance Ca+2-activated K+ channels, or indirect modulation of potassium channels induced by VIP receptors and accounts for the predominant relaxation response caused by gentisic acid in the guinea pig trachea.
Resumo:
Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.
Resumo:
The present study was designed to evaluate the differences in the coronary vasodilator actions of serotonin (5-HT) in isolated heart obtained from naive or castrated male and female rats that were treated with either estrogen or testosterone. Hearts from 12 groups of rats were used: male and female naive animals, castrated, castrated and treated with 17ß-estradiol (0.5 µg kg-1 day-1) for 7 or 30 days, and castrated and treated with testosterone (0.5 mg kg-1 day-1) for 7 or 30 days. After treatment, the vascular reactivity of the coronary bed was evaluated. Baseline coronary perfusion pressure (CPP) was determined and dose-response curves to 5-HT were generated. Baseline CPP differed between male (70 ± 6 mmHg, N = 10) and female (115 ± 6 mmHg, N = 12) naive rats. Maximal 5-HT-induced coronary vasodilation was higher (P<0.05) in naive female than in naive male rats. In both sexes, 5-HT produced endothelium-dependent coronary vasodilation. After castration, there was no significant difference in baseline CPP between hearts obtained from male and female rats (75 ± 7 mmHg, N = 8, and 83 ± 5 mmHg, N = 8, respectively). Castration reduced the 5-HT-induced maximal vasodilation in female and male rats (P<0.05). Estrogen treatment of castrated female rats restored (P<0.05) the vascular reactivity. In castrated male rats, 30 days of estrogen treatment increased (P<0.05) the responsiveness to 5-HT. The endothelium-dependent coronary vasodilator actions of 5-HT are greater in female rats and are modulated by estrogen. A knowledge of the mechanism of action of estrogen on coronary arteries could aid in the development of new therapeutic strategies and potentially decrease the incidence of cardiovascular disease in both sexes.
Resumo:
Trimethylsulfonium, a compound present in the midgut gland of the sea hare Aplysia brasiliana, negatively modulates vagal response, indicating a probable ability to inhibit cholinergic responses. In the present study, the pharmacological profile of trimethylsulfonium was characterized on muscarinic and nicotinic acetylcholine receptors. In rat jejunum the contractile response induced by trimethylsulfonium (pD2 = 2.46 ± 0.12 and maximal response = 2.14 ± 0.32 g) was not antagonized competitively by atropine. The maximal response (Emax) to trimethylsulfonium was diminished in the presence of increasing doses of atropine (P<0.05), suggesting that trimethylsulfonium-induced contraction was not related to muscarinic stimulation, but might be caused by acetylcholine release due to presynaptic stimulation. Trimethylsulfonium displaced [³H]-quinuclidinyl benzilate from rat cortex membranes with a low affinity (Ki = 0.5 mM). Furthermore, it caused contraction of frog rectus abdominis muscles (pD2 = 2.70 ± 0.06 and Emax = 4.16 ± 0.9 g), which was competitively antagonized by d-tubocurarine (1, 3 or 10 µM) with a pA2 of 5.79, suggesting a positive interaction with nicotinic receptors. In fact, trimethylsulfonium displaced [³H]-nicotine from rat diaphragm muscle membranes with a Ki of 27.1 µM. These results suggest that trimethylsulfonium acts as an agonist on nicotinic receptors, and thus contracts frog skeletal rectus abdominis muscle and rat jejunum smooth muscle via stimulation of postjunctional and neuronal prejunctional nicotinic cholinoreceptors, respectively.
Resumo:
We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.
Resumo:
Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.
Resumo:
The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17ß-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression.
Resumo:
The actin cytoskeleton is a dynamic structure that determines cell shape. Actin turnover is mandatory for migration in normal and malignant cells. In epithelial cancers invasion is frequently accompanied by epithelial to mesenchymal transition (EMT). In EMT, cancer cells acquire a migratory phenotype through transcriptional reprogramming. EMT requires substantial re-organization of actin. During the past decade, new actin regulating proteins have been discovered. Among these are members of the formin family. To study formin expression in tissues and cells, antibodies for detection of formin proteins FMNL1 (Formin-like protein 1), FMNL2 (Formin-like protein 2) and FHOD1 (Formin homology 2 domain containing protein 1) were used. The expression of formins was characterized in normal tissues and selected cancers using immunohistochemistry. The functional roles of formins were studied in cancer cell lines. We found that FMNL2 is widely expressed. It is a filopodial component in cultured melanoma cells. In clinical melanoma, FMNL2 expression has prognostic significance. FHOD1 is a formin expressed in mesenchymal cell types. FHOD1 expression is increased in oral squamous cell carcinoma (SCC) EMT. Importantly, FHOD1 participates in invasion of cultured oral SCC cells. FMNL1 expression is low in normal epithelia, but high in leukocytes and smooth muscle cells. Expression of FMNL1 can be found in carcinoma; we detected FMNL1 expressing cells in basal type of breast cancer. Our results indicate that formins are differentially expressed in normal tissues and that their expression may shift in cancer. Functionally FMNL2 and FHOD1 participate in processes related to cancer progression. Studying formins is increasingly important since they are potential drug targets.
Resumo:
The objective of the present study was to investigate the structure of the arterial walls of the offspring stemming from nitric oxide (NO)-defective hypertensive parents. The parents were treated with N G-nitro-L-arginine methyl ester (40 mg kg-1 day-1) for 5 weeks. Blood pressure was measured noninvasively in six 30-day-old rats and nine age-matched controls. The cardiovascular system was perfused with glutaraldehyde at 120 mmHg. The thoracic aorta and carotid artery were processed for electron microscopy, and geometry was determined by light microscopy. Endothelial cells, smooth muscle cells (SMC) and extracellular matrix (ECM) were determined by the point counting method in electron micrographs of the carotid artery. The blood pressure of experimental offspring was 150.0 ± 2.3 vs 104.6 ± 2.1 mmHg (P < 0.01) for the controls and their heart/body weight ratio of 3.9 ± 0.1 vs 4.4 ± 0.2 (P < 0.05) for the controls indicated cardiac hypotrophy. The wall thickness (tunica intima and media) of the thoracic aorta and carotid artery of experimental offspring was decreased to 78.9% (P < 0.01) and 83.8% (P < 0.01), respectively, compared to controls, as confirmed by a respective cross-sectional area of 85.3% (P < 0.01) and 84.1% (P < 0.01). The wall thickness/inner diameter ratio was reduced to 75% (P < 0.01) in the thoracic artery and to 81.5% (P < 0.01) in the carotid artery. No change in endothelial cell volume density or ECM was observed in the tunica intima of the carotid artery, and SMC volume density was lower in the tunica media (37.6 ± 0.9 vs 44.7 ± 1.1% for controls, P < 0.01), indicating compromised SMC development. Interference with arginine metabolism, a decrease in NO, and other factors are possible mechanisms underlying the structural alterations of the cardiovascular system of offspring from NO-defective hypertensive rats.
Resumo:
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
Resumo:
Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.
Resumo:
The vasorelaxing activity of rotundifolone (ROT), a major constituent (63.5%) of the essential oil of Mentha x villosa, was tested in male Wistar rats (300-350 g). In isolated rat aortic rings, increasing ROT concentrations (0.3, 1, 10, 100, 300, and 500 µg/ml) inhibited the contractile effects of 1 µM phenylephrine and of 80 or 30 mM KCl (IC50 values, reported as means ± SEM = 184 ± 6, 185 ± 3 and 188 ± 19 µg/ml, N = 6, respectively). In aortic rings pre-contracted with 1 µM phenylephrine, the smooth muscle-relaxant activity of ROT was inhibited by removal of the vascular endothelium (IC50 value = 235 ± 7 µg/ml, N = 6). Furthermore, ROT inhibited (pD2 = 6.04, N = 6) the CaCl2-induced contraction in depolarizing medium in a concentration-dependent manner. In Ca2+-free solution, ROT inhibited 1 µM phenylephrine-induced contraction in a concentration-dependent manner and did not modify the phasic contractile response evoked by caffeine (20 mM). In conclusion, in the present study we have shown that ROT produces an endothelium-independent vasorelaxing effect in the rat aorta. The results further indicated that in the rat aorta ROT is able to induce vasorelaxation, at least in part, by inhibiting both: a) voltage-dependent Ca² channels, and b) intracellular Ca2+ release selectively due to inositol 1,4,5-triphosphate activation. Additional studies are required to elucidate the mechanisms underlying ROT-induced relaxation.