976 resultados para acoustic monitoring
Resumo:
Farmland bird species have been declining in Europe. Many declines have coincided with general intensification of farming practices. In Finland, replacement of mixed farming, including rotational pastures, with specialized cultivation has been one of the most drastic changes from the 1960s to the 1990s. This kind of habitat deterioration limits the persistence of populations, as has been previously indicated from local populations. Integrated population monitoring, which gathers species-specific information of population size and demography, can be used to assess the response of a population to environment changes also at a large spatial scale. I targeted my analysis at the Finnish starling (Sturnus vulgaris). Starlings are common breeders in farmland habitats, but severe declines of local populations have been reported from Finland in the 1970s and 1980s and later from other parts of Europe. Habitat deterioration (replacement of pasture and grassland habitats with specialized cultivation areas) limits reproductive success of the species. I analysed regional population data in order to exemplify the importance of agricultural change to bird population dynamics. I used nestling ringing and nest-card data from 1951 to 2005 in order to quantify population trends and per capita reproductive success within several geographical regions (south/north and west/east aspects). I used matrix modelling, acknowledging age-specific survival and fecundity parameters and density-dependence, to model population dynamics. Finnish starlings declined by 80% from the end of the 1960s up to the end of the 1980s. The observed patterns and the model indicated that the population decline was due to the decline of the carrying capacity of farmland habitats. The decline was most severe in north Finland where populations largely become extinct. However, habitat deterioration was most severe in the southern breeding areas. The deteriorations in habitat quality decreased reproduction, which finally caused the decline. I suggest that poorly-productive northern populations have been partly maintained by immigration from the highly-productive southern populations. As the southern populations declined, ceasing emigration caused the population extinction in north. This phenomenon was explained with source sink population dynamics, which I structured and verified on the basis of a spatially explicit simulation model. I found that southern Finnish starling population exhibits ten-year cyclic regularity, a phenomenon that can be explained with delayed density-dependence in reproduction.
Resumo:
Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
Background: The fecal neutrophil-derived proteins calprotectin and lactoferrin have proven useful surrogate markers of intestinal inflammation. The aim of this study was to compare fecal calprotectin and lactoferrin concentrations to clinically, endoscopically, and histologically assessed Crohn’s disease (CD) activity, and to explore the suitability of these proteins as surrogate markers of mucosal healing during anti-TNFα therapy. Furthermore, we studied changes in the number and expression of effector and regulatory T cells in bowel biopsy specimens during anti-TNFα therapy. Patients and methods: Adult CD patients referred for ileocolonoscopy (n=106 for 77 patients) for various reasons were recruited (Study I). Clinical disease activity was assessed with the Crohn’s disease activity index (CDAI) and endoscopic activity with both the Crohn’s disease index of severity (CDEIS) and the simple endoscopic score for Crohn’s disease (SES-CD). Stool samples for measurements of calprotectin and lactoferrin, and blood samples for CRP were collected. For Study II, biopsy specimens were obtained from the ileum and the colon for histologic activity scoring. In prospective Study III, after baseline ileocolonoscopy, 15 patients received induction with anti-TNFα blocking agents and endoscopic, histologic, and fecal-marker responses to therapy were evaluated at 12 weeks. For detecting changes in the number and expression of effector and regulatory T cells, biopsy specimens were taken from the most severely diseased lesions in the ileum and the colon (Study IV). Results: Endoscopic scores correlated significantly with fecal calprotectin and lactoferrin (p<0.001). Both fecal markers were significantly lower in patients with endoscopically inactive than with active disease (p<0.001). In detecting endoscopically active disease, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for calprotectin ≥200 μg/g were 70%, 92%, 94%, and 61%; for lactoferrin ≥10 μg/g they were 66%, 92%, 94%, and 59%. Accordingly, the sensitivity, specificity, PPV, and NPV for CRP >5 mg/l were 48%, 91%, 91%, and 48%. Fecal markers were significantly higher in active colonic (both p<0.001) or ileocolonic (calprotectin p=0.028, lactoferrin p=0.004) than in ileal disease. In ileocolonic or colonic disease, colon histology score correlated significantly with fecal calprotectin (r=0.563) and lactoferrin (r=0.543). In patients receiving anti-TNFα therapy, median fecal calprotectin decreased from 1173 μg/g (range 88-15326) to 130 μg/g (13-1419) and lactoferrin from 105.0 μg/g (4.2-1258.9) to 2.7 μg/g (0.0-228.5), both p=0.001. The relation of ileal IL-17+ cells to CD4+ cells decreased significantly during anti-TNF treatment (p=0.047). The relation of IL-17+ cells to Foxp3+ cells was higher in the patients’ baseline specimens than in their post-treatment specimens (p=0.038). Conclusions: For evaluation of CD activity, based on endoscopic findings, more sensitive surrogate markers than CDAI and CRP were fecal calprotectin and lactoferrin. Fecal calprotectin and lactoferrin were significantly higher in endoscopically active disease than in endoscopic remission. In both ileocolonic and colonic disease, fecal markers correlated closely with histologic disease activity. In CD, these neutrophil-derived proteins thus seem to be useful surrogate markers of endoscopic activity. During anti-TNFα therapy, fecal calprotectin and lactoferrin decreased significantly. The anti-TNFα treatment was also reflected in a decreased IL-17/Foxp3 cell ratio, which may indicate improved balance between effector and regulatory T cells with treatment.
Resumo:
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
An asymptotic analysis for the coupled dispersion characteristics of a structural acoustic waveguide
Resumo:
Analytical expressions are derived, using asymptotics, for the fluid-structure coupled wavenumbers in a one-dimensional (1-D) structural acoustic waveguide. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation with an added term due to the fluid-structure coupling. As a result of this coupling, the prior uncoupled structural and acoustic wavenumbers, now become coupled structural and acoustic wavenumbers. A fluid-loading parameter e, defined as the ratio of mass of fluid to mass of the structure per unit area, is introduced which when set to zero yields the uncoupled dispersion equation. The coupled wavenumber is then expressed in terms of an asymptotic series in e. Analytical expressions are found as e is varied from small to large values. Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. This systematic derivation helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Though the asymptotic expansion used is limited to the first-order correction factor, the results are close to the numerical results. A general trend is that a given wavenumber branch transits from a rigid-walled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an-intersection in the coupled case, but a gap is created at that frequency. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite specimens with different thickness, geometry, and stacking sequences were subjected to fatigue spectrum loading in stages. Another set of specimens was subjected to static compression load. On-line acoustic Emission (AE) monitoring was carried out during these tests. Two artificial neural networks, Kohonen-self organizing feature map (KSOM), and multi-layer perceptron (MLP) have been developed for AE signal analysis. AE signals from specimens were clustered using the unsupervised learning KSOM. These clusters were correlated to the failure modes using available a priori information such as AE signal amplitude distributions, time of occurrence of signals, ultrasonic imaging, design of the laminates (stacking sequences, orientation of fibers), and AE parametric plots. Thereafter, AE signals generated from the rest of the specimens were classified by supervised learning MLP. The network developed is made suitable for on-line monitoring of AE signals in the presence of noise, which can be used for detection and identification of failure modes and their growth. The results indicate that the characteristics of AE signals from different failure modes in CFRP remain largely unaffected by the type of load, fiber orientation, and stacking sequences, they being representatives of the type of failure phenomena. The type of loading can have effect only on the extent of damage allowed before the specimens fail and hence on the number of AE signals during the test. The artificial neural networks (ANN) developed and the methods and procedures adopted show significant success in AE signal characterization under noisy environment (detection and identification of failure modes and their growth).