998 resultados para Zyjewski, Julie
Resumo:
In the fall of 1989, emergency excavation was undertaken in conjunction with restoration work at the John Brice II (Jennings-Brice) House, 18AP53. The exact date of construction for this brick home is problematic, and it was hoped that archaeological investigation could provide conclusive evidence to firmly establish the structure's date of construction. Excavation of one 5 X 5 ft. unit revealed the presence of 10 separate soil layers and four features of note, described in detail below. Unfortunately, no builders trench or similar feature by which we might date the house's construction was recovered. Future plans and possibilities for excavation at the property are outlined with the hopes of performing subsequent work at this rich site. We anticipate a focus on the arrangement and changes in use of the houselot, amassing evidence to support the presence of a vernacular garden on the property during the 18th century, as well as researching refuse disposal patterns, and clues to changing lifeways through the 18th century.
Resumo:
Blast-induced Traumatic Brain Injury (bTBI) is the signature injury of the Iraq and Afghanistan wars; however, current understanding of bTBI is insufficient. In this study, novel analysis methods were developed to investigate correlations between external pressures and brain injury predictors. Experiments and simulations were performed to analyze placement of helmet-mounted pressure sensors. A 2D Finite Element model of a helmeted head cross-section was loaded with a blast wave. Pressure time-histories for nodes on the inner and outer surfaces of the helmet were cross-correlated to those inside the brain. Parallel physical experiments were carried out with a helmeted headform, pressure sensors, and pressure chamber. These analysis methods can potentially lead to better helmet designs and earlier detection and treatment of bTBI.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Community-acquired pneumonia (CAP) is a major cause of morbidity in children. This study estimated the proportion of children with pneumococcal CAP among children hospitalised with CAP in Belgium and describes the causative serotype distribution after implementation of the 7-valent pneumococcal conjugate vaccine. Children 0-14 years hospitalised with X-ray-confirmed CAP were prospectively enrolled in a multicentre observational study. Acute and convalescent blood samples were collected. Pneumococcal aetiology was assessed by conventional methods (blood or pleural fluid cultures with Quellung reaction capsular typing or polymerase chain reaction [PCR] in pleural fluid), and recently developed methods (real-time PCR in blood and World Health Organization-validated serotype-specific serology). A total of 561 children were enrolled. Pneumococcal aetiology was assessed by conventional methods in 539, serology in 171, and real-time PCR in blood in 154. Pneumococcal aetiology was identified in 12.2% (66/539) of the children by conventional methods alone but in 73.9% by the combination of conventional and recently developed methods. The pneumococcal detection rate adjusted for the whole study population was 61.7%. Serotypes 1 (42.3%), 5 (16.0%), and 7F(7A) (12.8%) were predominant. In conclusion, Streptococcus pneumoniae remains the predominant bacteria in children hospitalised for CAP in Belgium after implementation of 7-valent pneumococcal conjugate vaccine, with non-vaccine-serotypes accounting for the majority of cases. The use of recently developed methods improves diagnosis of pneumococcal aetiology.
Resumo:
Enterotoxigenic Escherichia coli expressing F4 fimbriae are the major cause of porcine colibacillosis and are responsible for significant death and morbidity in neonatal and postweaned piglets. Via the chaperone-usher pathway, F4 fimbriae are assembled into thin, flexible polymers mainly composed of the single-domain adhesin FaeG. The F4 fimbrial system has been labeled eccentric because the F4 pilins show some features distinct from the features of pilins of other chaperone-usher-assembled structures. In particular, FaeG is much larger than other pilins (27 versus approximately 17 kDa), grafting an additional carbohydrate binding domain on the common immunoglobulin-like core. Structural data of FaeG during different stages of the F4 fimbrial biogenesis process, combined with differential scanning calorimetry measurements, confirm the general principles of the donor strand complementation/exchange mechanisms taking place during pilus biogenesis via the chaperone-usher pathway.
Resumo:
Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces.
Resumo:
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Resumo:
Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.
Resumo:
News
Resumo:
Detailed phenotypic characterization of B cell subpopulations is of utmost importance for the diagnosis and management of humoral immunodeficiencies, as they are used for classification of common variable immunodeficiencies. Since age-specific reference values remain scarce in the literature, we analysed by flow cytometry the proportions and absolute values of total, memory, switched memory and CD21(-/low) B cells in blood samples from 168 healthy children (1 day to 18 years) with special attention to the different subpopulations of CD21(low) B cells. The percentages of total memory B cells and their subsets significantly increased up to 5-10 years. In contrast, the percentages of immature CD21(-) B cells and of immature transitional CD21(low)CD38(hi) B cells decreased progressively with age, whereas the percentage of CD21(low) CD38(low) B cells remained stable during childhood. Our data stress the importance of age-specific reference values for the correct interpretation of B cell subsets in children as a diagnostic tool in immunodeficiencies.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Cryopreservation of ovarian tissue has been proposed for storing gametes of young patients at high risk of premature ovarian failure. Autotransplantation has recently provided some promising results and is still the unique option to restore ovarian function from cryopreserved ovarian tissue in humans. In this article, we analyse data from the combined orthotopic and heterotopic transplantation of cryopreserved ovarian tissue that restored the ovarian function and fertility. Orthotopic transplantation of cryopreserved ovarian tissue at ovarian and peritoneal sites, together with a heterotopic transplantation at the abdominal subcutaneous site, was performed to restore the ovarian function of a 29-year-old woman previously treated with bone marrow transplantation (BMT) for Hodgkin's disease. Ovarian reserve markers progressively suppress within values 5 months after the transplantation (basal FSH 5 mUI/ml and inhibin B 119 ng/ml). Follicular development was observed at all transplantation sites but was predominant at the ovarian site. Six natural cycles were fully documented and analysed. The patient became spontaneously pregnant following the sixth cycle, but unfortunately she later miscarried. Combined orthotopic and heterotopic transplantations succeeded in the restoration of normal spontaneous cycles. Furthermore, this spontaneous pregnancy confirmed the efficiency of this procedure for restoring human fertility.
Resumo:
Optimisation in wireless sensor networks is necessary due to the resource constraints of individual devices, bandwidth limits of the communication channel, relatively high probably of sensor failure, and the requirement constraints of the deployed applications in potently highly volatile environments. This paper presents BioANS, a protocol designed to optimise a wireless sensor network for resource efficiency as well as to meet a requirement common to a whole class of WSN applications - namely that the sensor nodes are dynamically selected on some qualitative basis, for example the quality by which they can provide the required context information. The design of BioANS has been inspired by the communication mechanisms that have evolved in natural systems. The protocol tolerates randomness in its environment, including random message loss, and incorporates a non-deterministic ’delayed-bids’ mechanism. A simulation model is used to explore the protocol’s performance in a wide range of WSN configurations. Characteristics evaluated include tolerance to sensor node density and message loss, communication efficiency, and negotiation latency .