973 resultados para YB
Resumo:
SOI based wrap-gate silicon nanowire FETs are fabricated through electron beam lithography and wet etching. Dry thermal oxidation is used to further reduce the patterned fins cross section and transfer them into nanowires. Silicon nanowire FETs with different nanowire widths varying from 60 nm to 200 nm are fabricated and the number of the nanowires contained in a channel is also varied. The on-current (I-ON) and off-current (I-OFF) of the fabricated silicon nanowire FET are 0.59 mu A and 0.19 nA respectively. The subthreshold swing (SS) and the drain induced barrier lowering are 580 mV/dec and 149 mVN respectively due to the 30 nm thick gate oxide and 1015 cm(-3) lightly doped silicon nanowire channel. The nanowire width dependence of SS is shown and attributed to the fact that the side-gate parts of a wrap gate play a more effectual role as the nanowires in a channel get narrower. It seems the nanowire number in a channel has no effect on SS because the side-gate parts fill in the space between two adjacent nanowires.
Resumo:
An electrically bistable device has been fabricated using nanocomposite films consisting of silver nanoparticles and a semiconducting polymer by a simple spin-coating method. The current-voltage characteristics of the as-fabricated devices exhibit an obvious electrical bistability and negative differential resistance effect. The current ratio between the high-conducting state and low-conducting state can reach more than 103 at room temperature. The electrical bistability of the device is attributed to the electric-filed-induced charge transfer between the silver nanoparticles and the polymer, and the negative differential resistance behavior is related to the charge trapping in the silver nanoparticles. The results open up a simple approach to fabricate high quality electrically bistable devices by doping metal nanoparticles into polymer.
Resumo:
By employing poly(ethylene glycol) (PEG) shielding and a polymer cushion to achieve air stability of the lipid membrane, we have analyzed PEG influence on dried membranes and the interaction with cholesterol. Small unilamellar vesicles (SUVs) formed by the mixture of 1,2-dimyristoylphosphatidylcholine (DMPC) with different molar fraction of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000)) adsorb and fuse into membranes on different polymer-modified silicon dioxide surfaces, including chitosan, poly(L-lysine) (PLL), and hyaluronic acid, Dried membranes arc further examined by ellipsometer and atomic force microscopy (AFM). Only chitosan can support a visible and uniform lipid array. The thickness of dry PEGylated lipid membrane is reduced gradually as the molar fraction of PEG increases. AFM scanning confirms the lipid membrane stacking for vesicles containing low PEG, and only a proper amount of PEG can maintain a single lipid hi lover; however, the air stability of the membrane will be destroyed if overloading. PEG. Cholesterol incorporation can greatly improve the structural stability of lipid membrane, especially for those containing high molar fraction of PEG. Different amounts of cholesterol influence the thickness and surface morphology of dried membrane.
Resumo:
After the excavation of Jinping underground cavern, a strong expansion appears along the unloading direction of the rock mass, mainly in the type of tensile rupture, accompanied by shear destruction, unloading resulted in significant deterioration of mechanical properties of rock. Based on the in-site investigation of rock mass structure, via analyzing the acoustic testing data, we identify the unloading range of the side walls and the division of rock types, and carry out with the solution of rock mechanical parameters about different unloading zone, providing geological foundation for the supporting design of the following design of the side walls, at the same time, providing reference for the selection of mechanical parameters of other underground excavation engineering with similar geological conditions.