629 resultados para Wool shearing
Resumo:
Imperfect; wanting the volume entitled, "Paper, by Prof. Archer, Printing, by Joseph Hatton, etc."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Hearings held: July 25-Aug. 10, 1921. (Pt.1)
Resumo:
Includes bibliographical references.
Resumo:
Vols. 3-9 edited by W.A. Davis and Samuel S. Sadtler.
Resumo:
Presented by Mr. La Follette. Ordered printed August 5, 1912.
Resumo:
An indictment or foreword.--I stage my first death scene.--Meredith Nicholson and a camel.--The soul and the trap-drummer.--Why Shakespeare's audience didn't walk out on him.--Booth Tarkington discusses the cosmos.--Riley and a colored barber.--Boyhood of the hero.--Miltonic angels, not Herrick blossoms.--The author goes wool gathering.--The effeminacy of pajamas.--A farewell from William Marion Reedy.--Mrs. Joyce Kilmar at Walnut Hills.--E.V. Lucas fools Chicago.--Maternity and climate.--To San Francisco: a new Walking-stick paper.--A pal of Jack London.--I become a movie "director"
Resumo:
This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.
Resumo:
This paper deals with the evolution of the state of dispersion of organically modified montmorillonites in epoxy or amine precursors. The epoxy prepolymer is a diglycidyl ether of bisphenol A (DGEBA) and the curing agent is an aliphatic diamine with a polyoxypropylene backbone (Jeffamine D2000). The clay dispersion is evaluated at the platelet scale (nanoscopic scale) from X-ray spectrometry [wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS)] and at the aggregates scale (microscopic scale) from rheological analysis. The organoclays used form gels in the monomers above the percolation threshold if no shear is applied and present a mechanical gel/sol transition when shear stress increases. Gel strength and viscosity at high shear rates are linked to the nanometric state of dispersion and reveal the existence of two different organizations depending on organoclay/monomer interactions: (i) When the clay shows good interactions with the monomer, a significant swelling of the clay galleries by the monomer is obtained. These swollen particles lead to formation of weak gels which after shearing give high relative viscosity fluids. (ii) When the clay develops poor interactions with the monomer, the clay tends to reduce its exchange surface with the monomer and leads to a strongly connected gel. Shear breaks down this physical network leading to a very low relative viscosity fluid composed of nonswollen particles keeping a high aspect ratio. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Statistical tests of Load-Unload Response Ratio (LURR) signals are carried in order to verify statistical robustness of the previous studies using the Lattice Solid Model (MORA et al., 2002b). In each case 24 groups of samples with the same macroscopic parameters (tidal perturbation amplitude A, period T and tectonic loading rate k) but different particle arrangements are employed. Results of uni-axial compression experiments show that before the normalized time of catastrophic failure, the ensemble average LURR value rises significantly, in agreement with the observations of high LURR prior to the large earthquakes. In shearing tests, two parameters are found to control the correlation between earthquake occurrence and tidal stress. One is, A/(kT) controlling the phase shift between the peak seismicity rate and the peak amplitude of the perturbation stress. With an increase of this parameter, the phase shift is found to decrease. Another parameter, AT/k, controls the height of the probability density function (Pdf) of modeled seismicity. As this parameter increases, the Pdf becomes sharper and narrower, indicating a strong triggering. Statistical studies of LURR signals in shearing tests also suggest that except in strong triggering cases, where LURR cannot be calculated due to poor data in unloading cycles, the larger events are more likely to occur in higher LURR periods than the smaller ones, supporting the LURR hypothesis.
Resumo:
Wool tenderness is a significant problem in Australia, especially in areas where sheep graze under highly seasonal conditions. In this study, a profit function model is specified, estimated and simulated to assess the economic impact of staple strength-enhancing research on the profits of Australian woolgrowers. The model is based on a number of fundamental characteristics of the Australian wool industry and the staple-strength enhancing technology being assessed. The model consists of a system of demand and supply equations that are specified in terms of effective, rather than actual, prices. The interrelationships between the inputs and outputs are allowed for in the model in a manner that is consistent with theoretical restrictions. The adoption of the new feed management strategy results in a 4.4% increase in the expected profits of Australian wool producers in the short-run, and a 2.2% increase in expected profits in the long-run.
Resumo:
Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing, and to liquefy when agitated. Thixotropic fluids are commonly used in the construction industry (e.g., liquid concrete and drilling fluids), and related applications include some forms of mud flows and debris flows. This paper describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel. A very simple thixotropic model, which predicts the basic theological trends of such fluids, was used. It describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and theology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid (related to its time of restructuration at rest). These findings were successfully compared with systematic bentonite suspension experiments. The present work is the first theoretical analysis combining the basic principles of unsteady flow motion with a thixotropic fluid model and systematic laboratory experiments.