932 resultados para Weber, Wally
Resumo:
Codoping of p-type GaN nanowires with Mg and oxygen was investigated using first-principles calculations. The Mg becomes a deep acceptor in GaN nanowires with high ionization energy due to the quantum confinement. The ionization energy of Mg doped GaN nanowires containing passivated Mg-O complex decreases with increasing the diameter, and reduces to 300 meV as the diameter of the GaN nanowire is larger than 2.01 nm, which indicates that Mg-O codoping is suitable for achieving p-type GaN nanowires with larger diameters. The codoping method to reduce the ionization energy can be effectively used in other semiconductor nanostructures. (C) 2010 American Institute of Physics.
Resumo:
Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.
Resumo:
Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.
Resumo:
On the metalorganic chemical vapour deposition growth of AlN, by adjusting H-2+N-2 mixture gas components, we can gradually control island dimension. During the Volmer - Weber growth, the 2-dimensional coalescence of the islands induces an intrinsic tensile stress. Then, this process can control the in-plane stress: with the N-2 content increasing from 0 to 3 slm, the in-plane stress gradually changes from 1.5 GPa tensile stress to - 1.2GPa compressive stress. Especially, with the 0.5 slm N-2 + 2.5 slm H-2 mixture gas, the in-plane stress is only 0.1 GPa, which is close to the complete relaxation state. Under this condition, this sample has good crystal and optical qualities.
Resumo:
Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.
Resumo:
The defect creation at low energy events was studied using density functional theory molecular dynamics simulations in silicon carbide nanotubes, and the displacement threshold energies determined exhibit a dependence on sizes, which decrease with decreasing diameter of the nanotubes. The Stone-Wales (SW) defect, which is a common defect configurations induced through irradiation in nanotubes, has also been investigated, and the formation energies of the SW defects increase with increasing diameter of the nanotubes. The mean threshold energies were found to be 23 and 18 eV for Si and C in armchair (5,5) nanotubes. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3238307]
Resumo:
The atomic and electronic structures of saturated and unsaturated GaN nanotubes along the [001] direction with (100) lateral facets are studied using first-principles calculations. Atomic relaxation of nanotubes shows that appreciable distortion occurs in the unsaturated nanotubes. All the nanotubes considered, including saturated and unsaturated ones, exhibit semiconducting, with a direct band gap Surface states arisen from the 3-fold-coordinated N and Ga atoms at the lateral facets exist inside the bulklike band gap. When the nanotubes are saturated with hydrogen, these dangling bond bands are removed from the band gap, but the band gap decreases with increasing the wall thickness of the nanotubes.
Resumo:
Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect.
Resumo:
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.
Resumo:
The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.
Resumo:
The turn-on delay time jitter of four different unbiased gain-switched laser types is determined by measuring the temporal probability distribution of the leading edge of the emitted optical pulse. One single-mode 1.5-mu-m distributed feed-back laser and three multimode Fabry-Perot lasers emitting at 750 nm and 1.3-mu-m are investigated. The jitter is found to decrease for all lasers with increasing injection current. For multimode lasers it decreases from 8 ps excited slightly above threshold down to below 2 ps at three times the threshold current. The jitter of the distributed feedback (DFB) laser is a factor of 3-5 larger than the jitter of the three multimode lasers. A new model to predict the turn-on delay time jitter is presented and explains the experiments quantitatively.
Resumo:
黄瓜枯萎病(Cucumber fusarium Wilt)又称萎蔫病、蔓割病,是一种世界性的植物维管束病害。1925年Weber 首次报道在美国佛罗里达州发生。该病由半知菌亚门,镰刀菌属尖孢镰刀菌(Fusarium oxysporum)侵染所致,是一类主要经土壤传播的维管束病害,在我国瓜类种植区也普遍发生,在北方地区尤为严重。近年来随着蔬菜栽培面积的增加,土壤菌量逐年积累,此病的发生日趋严重。据统计,每年黄瓜枯萎病的发病率可达20%,严重时高达80%-90%,甚至全部毁种,导致了黄瓜的严重减产。 本论文从56株选自与海洋动、植物共生/共栖的细菌为资源,以黄瓜枯萎病菌(Fusarium oxysporum)为靶菌,通过平板对峙试验筛选出8株具有较强抑黄瓜枯萎病菌作用的菌株,其中以海洋细菌3512A的抑菌效果最好。室内模拟实验表明该菌株能够在灭菌土和有菌土中高密度定殖,促进黄瓜幼苗的生长。盆栽试验表明其能够有效的防治黄瓜枯萎病,防效达64.29%~73.62%,还能促进黄瓜的生长,提高叶绿素含量,增加黄瓜的产量,可认为是一株植物根际促生菌(PGPR)采用传统的细菌学和分子生物学的鉴定方法对其进行了菌种鉴定,为枯草芽孢杆菌(Bacilluss subtilis)。 通过对抗菌谱的研究,发现海洋细菌3512A除了对黄瓜枯萎病菌(Fusarium oxysporum) 有很强的抑菌活性外,对金黄色葡萄球菌、大肠杆菌、白色念珠菌和多种植物病原真菌都具有较强的抑制作用,抗菌范围广,可进一步做对其它农作物病害的防治实验。 海洋细菌3512A在盆栽试验中对黄瓜枯萎病的成功防治以及促生作用,为其良好的使用提供了指导并为其进一步的研究提供了基础。
Resumo:
综述了近年来中国科学院微重力重点实验室(国家微重力实验室)完成的一系列微重力气液两相流动与池沸腾传热方面的地基实验、飞行实验和理论研究等方面获得的主要成果.在微重力气液两相流动方面, 提出了半理论Weber数模型用于预测微重力条件下气液两相弹一环状流转换, 并采用Monte Carlo方法, 针对气泡初始尺寸对泡一弹状流转换的影响进行数值研究.通过俄罗斯"和平号"空间站与IL-76失重飞机实验, 获得了微重力下的气液两相流型图, 与此同时在地面利用小尺度毛细管模型模拟了微重力气液两相流动特征.实验测量了微重力气液两相流压降, 并基于微重力流动特性建立了一个泡状流压降关联模型.在微重力池沸腾传热方面, 利用我国返回式卫星完成了两次空间实验, 其中, 第22颗返回式卫星搭载铂丝表面R113池沸腾实验采用控制温度的稳态加热方式, 而实践8号育种卫星搭载平面FC-72池沸腾实验则采用控制加热电压的准稳态加热方式.同时, 还进行了地面常重力和落塔短时微重力条件下的对比实验研究.观察到丝状加热表面微重力时轻微的传热强化现象, 而平板加热表面微重力核态池沸腾低热流时传热强化、高热流时传热恶化.微重力实验中观察到气泡脱落前存在横向运动现象, 据此分析了气泡行为与传热之间关系, 并提出了一个预测丝状加热表面气泡脱落直径的半理论模型.旨在对相关领域的进一步发展和空间两相流系统的应用提供数据及理论支持
Resumo:
微重力条件下的气液两相流动与传热现象不仅在航天科技领域有重要的应用前景,而且由于抑制了重力和两相密度差所引起的浮力分层与相间滑移等因素的干扰,能够简化流动复杂性,突出流动中经由液气界面产生的相互作用,对揭示气液两相流动与传热现象内在控制机理极为有利,因此得到国际航天工程界和微重力流体力学界的高度重视,是目前相当活跃的研究前沿领域之一。中国科学院国家微重力实验室自20世纪90年代中期创建伊始,即将微重力气液两相流动与传热作为主要研究方向之一,先后完成了"和平号"空间站气液两相流实验、IL-76失重飞机气液两相流实验、第22颗返回式卫星和实践8号育种卫星搭载池内沸腾实验、NML落塔池内沸腾实验、NML落塔燃料电池内部气液两相流动及其电性能实验(与北京工业大学合作)等微重力实验研究项目,并通过地面对比实验及深入的数据分析和理论探索,得到如下结果:\newline (1)管内绝热气液两相流:首个长期、稳定微重力条件下圆管气液两相流型图和低重力条件下方管气液两相流型图,预测微重力气液两相弹状流-环状流转换的半理论Weber数模型,低重力条件下方管气液两相流摩擦压降数据及一个新的预测微重力气液两相泡状流压降的均相流模型等。\newline (2)池内沸腾:不同压力和过冷度条件下丝状表面和平板表面上的微重力池内沸腾传热曲线,临界热流(CHF)数据及其与重力相关的尺度关系,微重力池内沸腾现象中的气泡动力学行为及一个计入Marangoni效应的气泡脱落模型等。\newline (3)燃料电池微细通道气液两相流动:直接甲醇燃料电池(DMFC)内CO$_2$气泡生成与运动规律及其对燃料电池电性能的影响,H$_2$质子交换膜燃料电池(PEMFC)内水滴的生成与两相流动的发展及其对燃料电池电性能的影响等。\newline 本文首先对上述成果予以详细评述,然后结合该领域国际发展现状与我国航天(尤其是载人航天)事业的发展需求,对我国微重力气液两相流动与传热研究近期的发展趋势予以探讨。
Resumo:
The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca-48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.