982 resultados para Wasp pollination
Resumo:
Pollinators face many challenges within agricultural systems due to landscape changes and intensification which can affect resource availability that can impact pollination services. This paper examines pigeon pea pollination and considers how landscape context and agricultural intensification in terms of pesticide use affects the abundance of bees characterized by species guilds on crops. The study was conducted on six paired farms across a gradient of habitat complexity based on the distance of each farm from adjacent semi-natural vegetation in Kibwezi Sub-county, Kenya. The study found that farms which do not use insecticides in farm management, but are in close proximity to natural habitat have greater bee guild abundance, but at further distances, overall abundance is reduced with or without insecticide use. At 1 km landscape radius, the complexity of habitats but not patch size had a positive impact on the abundance of cavity nesting bees and mason bees, which can be attributed to the interspersion of the small-holder farms with semi-natural habitats across the landscapes producing mosaics of heterogeneous habitats. The study revealed the strongest relationships between fruit set and bee abundance to be with the carpenter bee, social bee and solitary bee guilds, which are among the most abundant bees visiting pigeon pea flowers in this system. Our findings provide the foundation for conservation efforts by identifying which bee guilds pollinated pigeon peas. From this study, we suggest managing the floral and nesting resources that would best support the most abundant crop pollinators, and also reducing insecticide application to the crop.
Resumo:
Accounting for biodiversity has received increasing attention from the academic accounting community in recent years. Despite a stream of research investigating the quality and quantity of biodiversity reporting in general, no academic research has focused on reporting related to one specific species. This paper explores the quality and quantity of corporate disclosures relating to bees. Society is becoming increasingly concerned about the accelerating fall in bee populations around the world. Colony Collapse Disorder has been spreading through global bee populations since 2006, decimating commercial hives. Concerns are fuelled by fears that pollinators may become extinct which would have dire consequences for the majority of world food production, leaving human pollination, at immense cost, the only alternative. On the basis of these fears, companies as well as other organisations, have started to establish programmes aimed at rejuvenating global bee populations. In this paper we explore the bee-related disclosures provided by a large selection of UK listed companies. We assess the extent to which companies believe they have a role to play in enhancing and protecting bee populations. Further we consider whether corporate accountability in this area derives solely from a business case or whether there is a deeper societal connection with bees as a species which is encouraging companies to protect their survival. The paper investigates the historical and philosophical connection between bees and human beings, for example the ways industrial production has been likened to honey production. We draw parallels between bees and human industrial organisation as well as between the role and responsibilities of the bookkeeper and the beekeeper.
Resumo:
The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott-Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp(-/-) mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet-platelet interaction and their absence contributes to the bleeding diathesis of Wiskott-Aldrich syndrome.
Resumo:
Actin reorganization is a tightly regulated process that co-ordinates complex cellular events, such as cell migration, chemotaxis, phagocytosis and adhesion, but the molecular mechanisms that underlie these processes are not well understood. SCAR (suppressor of cAMP receptor)/WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homology protein] proteins are members of the conserved WASP family of cytoskeletal regulators, which play a critical role in actin dynamics by triggering Arp2/3 (actin-related protein 2/3)-dependent actin nucleation. SCAR/WAVEs are thought to be regulated by a pentameric complex which also contains Abi (Abl-interactor), Nap (Nck-associated protein), PIR121 (p53-inducible mRNA 121) and HSPC300 (haematopoietic stem progenitor cell 300), but the structural organization of the complex and the contribution of its individual components to the regulation of SCAR/WAVE function remain unclear. Additional features of SCAR/WAVE regulation are highlighted by the discovery of other interactors and distinct complexes. It is likely that the combinatorial assembly of different components of SCAR/WAVE complexes will prove to be vital for their roles at the centre of dynamic actin reorganization.
Resumo:
An increasing world population has put great pressure on agricultural landscapes to continually increase in efficiency whilst avoiding negative impacts on the environment. Protected areas, mass flower crops and agri-environment schemes have been identified as three broad complimentary mitigation strategies to protect and conserve pollinators. Each strategy differs temporarily and spatially but all offer significant benefits to pollinators. It is vital we identify the value of these mitigation strategies and their complementarity if we are to tailor landscape management for optimal results and work towards safeguarding our pollination service.
Resumo:
Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar. Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species.
Resumo:
The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions-specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.
Resumo:
1. Bee populations and other pollinators face multiple, synergistically acting threats, which have led to population declines, loss of local species richness and pollination services, and extinctions. However, our understanding of the degree, distribution and causes of declines is patchy, in part due to inadequate monitoring systems, with the challenge of taxonomic identification posing a major logistical barrier. Pollinator conservation would benefit from a high-throughput identification pipeline. 2. We show that the metagenomic mining and resequencing of mitochondrial genomes (mitogenomics) can be applied successfully to bulk samples of wild bees. We assembled the mitogenomes of 48 UK bee species and then shotgun-sequenced total DNA extracted from 204 whole bees that had been collected in 10 pan-trap samples from farms in England and been identified morphologically to 33 species. Each sample data set was mapped against the 48 reference mitogenomes. 3. The morphological and mitogenomic data sets were highly congruent. Out of 63 total species detections in the morphological data set, the mitogenomic data set made 59 correct detections (93�7% detection rate) and detected six more species (putative false positives). Direct inspection and an analysis with species-specific primers suggested that these putative false positives were most likely due to incorrect morphological IDs. Read frequency significantly predicted species biomass frequency (R2 = 24�9%). Species lists, biomass frequencies, extrapolated species richness and community structure were recovered with less error than in a metabarcoding pipeline. 4. Mitogenomics automates the onerous task of taxonomic identification, even for cryptic species, allowing the tracking of changes in species richness and istributions. A mitogenomic pipeline should thus be able to contain costs, maintain consistently high-quality data over long time series, incorporate retrospective taxonomic revisions and provide an auditable evidence trail. Mitogenomic data sets also provide estimates of species counts within samples and thus have potential for tracking population trajectories.
Resumo:
Flowering and successful pollination in wheat are key determinants of both quantity and quality of grain. Bread wheat line ‘Paragon’, introgressed with single or multiple day length insensitivity alleles was used to dissect the effects on the timing and duration of flowering within a hierarchical plant architecture. Flowering of wheat plants was observed in a series of pot-based and field experiments. Ppd-D1a was the most potent known allele affecting the timing of flowering, requiring the least thermal time to flowering across all experiments. The duration of flowering for individual lines was dominated by the shift in the start of flowering in later tillers and the number of tillers per plant, rather than variation in flowering duration of individual spikes. There was a strong relationship between flowering duration and the start of flowering with the earliest lines flowering for the longest. The greatest flowering overlap between tillers was recorded for the Ppd-1b. Across all lines, a warmer environment significantly reduced the duration of flowering and the influence of Ppd-1a alleles on the start of flowering. These findings provide evidence of pleiotropic effects of the Ppd-1a alleles, and have direct implications for breeding for increased stress resilient wheat varieties.
Resumo:
We characterised a set of nine polymorphic microsatellite loci for Pleistodontes imperialis sp. 1, the pollinator wasp of Port Jackson fig (Ficus rubiginosa) in south-eastern Australia. Characterisation was performed on 30 female individuals collected from a population in Sydney, Australia. The average number of alleles per locus was 7.33, and eight loci were not in Hardy–Weinberg equilibrium. This was expected as fig wasps are known to be highly inbred. A test of genetic differentiation between two natural populations of P. imperialis sp. 1 (Sydney and Newcastle, Australia – some 120 km apart) yielded a very low FST value of 0.012, suggesting considerable gene flow. Bayesian clustering analysis using TESS 2.3.1, which does not assume Hardy–Weinberg equilibrium, however, indicated potential spatial substructuring between the Sydney and Newcastle populations, as well as within the Sydney population. The described loci were also characterised for two other species in the P. imperialis complex: P. imperialis sp. 2 (Townsville, Australia) and P. imperialis sp. 4 (Brisbane, Australia). Seven and six of the nine loci were polymorphic for P. imperialis sp. 2 and P.imperialis sp. 4, respectively.
Resumo:
1. In many fig wasp species, armoured wingless males regularly engage in lethal fights for access to females inside figs, which act as discrete mating patches. 2. Kin selection generally opposes killing brothers, because their reproductive success provides indirect genetic benefits (inclusive fitness). However, siblicide may be avoided if (i) brothers do not occur in the same figs, or (ii) males avoid fighting brothers in the same fig. Alternatively, (iii) siblicide may occur because intense mate competition between brothers at the local scale overcomes kin selection effects, or (iv) males do not recognise kin. 3. A fig may also contain wasps from other closely related species and it is not known if males also fight with these individuals. 4. Nine microsatellite loci were used in the first genetic analysis of fighting in fig wasps. We assigned species and sibling identities to males and tested alternative fighting scenarios for three Sycoscapter wasp species in figs of Ficus rubiginosa. 5. Approximately 60% of figs contained males frommore than one Sycoscapter species and approximately 80% of fights were between conspecifics, but a surprising 20% were between heterospecific males. 6.Within species, fewfigs contained brothers, suggesting that females typically lay one son per fig. Overall, most males do not compete with brothers and all fights observed were between unrelated males. Key words:Competition, fighting, genetics, kin selection, microsatellites, relatedness.
Resumo:
1. Bees are a functionally important and economically valuable group, but are threatened byland-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species’ ecological traits. 2. Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.3. We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation),traits and trait 9 land-use interactions, in explaining species occurrence and abundance.4. Species’ sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats.5. Synthesis and applications. Rather than targeting particular species or settings, conservation action s may be more effective if focused on mitigating situations where species’ traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.
Resumo:
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time-calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 378-390.
Resumo:
(Stigmatic surface, reproductive biology and taxonomy of the Vochysiaceae). The Vochysiaceae are Neotropical trees and shrubs, common in the savanna areas in Central Brazil (Cerrados). The family has been traditionally divided into two tribes: Erismeae, with three genera, and Vochysieae, with five genera. We investigated the stigmatic surface of six Vochysiaceae species, belonging to four genera of Vochysieae: Vochysia, Salvertia, Callisthene and Qualea. Flowers and buds at different developmental stages were collected. Morphological features were observed on fresh material and stigmatic receptivity was inferred based on esterasic activity. Pistils were fixed and embedded in paraplast and sectioned on a rotary microtome; the sections were stained before histological analysis. Stigmas of open flowers were also observed by scanning electron microscopy. Stigmas of all species were wet and showed esterasic activity at pre-anthesis and anthesis stages. Stigmatic surface was continuous with transmitting tissue of glandular nature. Vochysia and Salvertia stigmatic surfaces were formed by multicelular uniseriate hairs, and species of the remaining genera showed papillate surface. The exudate over mature stigmas in all species flowed without rupture of stigmatic Surface and pollen tubes grew down between hairs or papillae. Differences on the stigmatic surface agreed with a phylogenetic reconstruction that separated two clades and indicated that Vochysieae is not monophyletic. Stigmatic features could not be associated with pollination and breeding systems.
Resumo:
(Structural aspects of the zygotic embryogenesis of Acca sellowiana (O. Berg) Burret (Myrtaceae)). Acca sellowiana has anatropous, bitegmic and crassinucellate ovules. The outer and inner integuments are double-layered except in the micropyle, where they are composed of more layers; the micropyle is zig-zag shaped. The egg apparatus lies at the micropylar pole, and the zynergids present a conspicuous filiform apparatus. The antipodal cells are present in the chalazal region, persisting before the occurrence of double fertilization. The zygote is visible 21 days after pollination; nuclear endosperm is already present. The first mitotic division of the zygote occurs at 24(th) day. The globular, cordiform and torpedo embryo stages can be seen at 30, 45 and 60 days after pollination, respectively. The mature embryo characterized by the presence of a well-developed hypocotyl-radicular axis with two fleshy and folded cotyledons was observed 120 days after pollination. Endosperm is absent in the seeds, and the embryo has spiral form, characteristic of Myrtinae. The zygotic embryology studies of A. sellowiana indicate that this species has embryological characteristics which are in agreement with those reported for Myrtaceae (Myrteae, Myrtinae), and also broaden the knowledge about the sexual reproduction of this native species, whose commercial cultivation has been growing.