618 resultados para WLT Estimators
Resumo:
2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.
Resumo:
2010 Mathematics Subject Classification: 62F10, 62F12.
Resumo:
2000 Mathematics Subject Classification: 62G07, 60F10.
Resumo:
2000 Mathematics Subject Classification: 62G07, 62L20.
Resumo:
Wine is a very special product from an economic, cultural, and sociological point of view. Wine culture and wine trade play an important role in Hungary. The effect of cultural and geographical proximity on international trade has already been proven in the international trade literature. The size of bilateral trade flows between any two countries can be approximated by the gravity theory of trade. The gravity model provides empirical evidence of the relationship between the size of the economies, the distances between them, and their trade. This paper seeks to analyse the effect of cultural and geographical proximity on Hungary’s bilateral wine trade between 2000 and 2012, employing the gravity equation. The analysis is based on data from the World Bank WITS, WDI, as well as CEPII, and WTO databases. I apply OLS, Random Effects, Poisson, Pseudo-Poisson-Maximum-Likelihood and Heckman two stage estimators to calculate the gravity regression. The results show that in the case of Hungary, cultural similarity and trade liberalisation have a positive impact, while geographical distance, landlockedness, and contiguity have a negative impact on Hungarian wine exports.
Resumo:
Since the Morris worm was released in 1988, Internet worms continue to be one of top security threats. For example, the Conficker worm infected 9 to 15 million machines in early 2009 and shut down the service of some critical government and medical networks. Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie networks controlled by attackers setting out coordinated attacks. In recent years, botnets have become the number one threat to the Internet. The objective of this research is to characterize spatial-temporal infection structures of Internet worms, and apply the observations to study P2P-based botnets formed by worm infection. First, we infer temporal characteristics of the Internet worm infection structure, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet observations. We show analytically and empirically that our proposed estimators can significantly improve the inference accuracy. Second, we reveal two key spatial characteristics of the Internet worm infection structure, i.e., the number of children and the generation of the underlying tree topology formed by worm infection. Specifically, we apply probabilistic modeling methods and a sequential growth model. We show analytically and empirically that the number of children has asymptotically a geometric distribution with parameter 0.5, and the generation follows closely a Poisson distribution. Finally, we evaluate bot detection strategies and effects of user defenses in P2P-based botnets formed by worm infection. Specifically, we apply the observations of the number of children and demonstrate analytically and empirically that targeted detection that focuses on the nodes with the largest number of children is an efficient way to expose bots. However, we also point out that future botnets may self-stop scanning to weaken targeted detection, without greatly slowing down the speed of worm infection. We then extend the worm spatial infection structure and show empirically that user defenses, e.g. , patching or cleaning, can significantly mitigate the robustness and the effectiveness of P2P-based botnets. To counterattack, we evaluate a simple measure by future botnets that enhances topology robustness through worm re-infection.
Resumo:
This research addresses the problem of cost estimation for product development in engineer-to-order (ETO) operations. An ETO operation starts the product development process with a product specification and ends with delivery of a rather complicated, highly customized product. ETO operations are practiced in various industries such as engineering tooling, factory plants, industrial boilers, pressure vessels, shipbuilding, bridges and buildings. ETO views each product as a delivery item in an industrial project and needs to make an accurate estimation of its development cost at the bidding and/or planning stage before any design or manufacturing activity starts. ^ Many ETO practitioners rely on an ad hoc approach to cost estimation, with use of past projects as reference, adapting them to the new requirements. This process is often carried out on a case-by-case basis and in a non-procedural fashion, thus limiting its applicability to other industry domains and transferability to other estimators. In addition to being time consuming, this approach usually does not lead to an accurate cost estimate, which varies from 30% to 50%. ^ This research proposes a generic cost modeling methodology for application in ETO operations across various industry domains. Using the proposed methodology, a cost estimator will be able to develop a cost estimation model for use in a chosen ETO industry in a more expeditious, systematic and accurate manner. ^ The development of the proposed methodology was carried out by following the meta-methodology as outlined by Thomann. Deploying the methodology, cost estimation models were created in two industry domains (building construction and the steel milling equipment manufacturing). The models are then applied to real cases; the cost estimates are significantly more accurate than the actual estimates, with mean absolute error rate of 17.3%. ^ This research fills an important need of quick and accurate cost estimation across various ETO industries. It differs from existing approaches to the problem in that a methodology is developed for use to quickly customize a cost estimation model for a chosen application domain. In addition to more accurate estimation, the major contributions are in its transferability to other users and applicability to different ETO operations. ^
Resumo:
In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.
Resumo:
In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.
Resumo:
This dissertation investigates the effects of internationalization in two gaps related to the capital structure that have not been discussed by the Brazilian literature yet. To this, were developed two independent sections. The first examined what the effects of internationalization on the deviation from the target capital structure. The second examined what the effects of internationalization on speed of adjustment (SOA) of the capital structure. It used data from Brazil, multinational and domestic companies, from 2006 to 2014. The results of the first analysis indicate that internationalization helps reduce the difference between the target and the current debt. That is, to the extent that the level of internationalization increases; whether only export or a combination of export, assets and employees abroad, the gap between the current structure and the target structure decreases. This reduction is given as a function of internationalization as a consequence of the upstream effect of the upstream-downstream hypothesis. Thus, as the Market Timing theory, it can be seen as an opportunity for adjustment of the capital structure, and with the reduction of deviation, there is also a reduction in the cost of capital of the firm. The result of the second analysis indicates that internationalization is able to significantly increase the speed adjustment, ensuring for the multinational a faster adjustment of its capital structure. Exports increase the SOA in 9 to 23%. And when also kept active assets and employees abroad the increase is 8 to 20%. In terms of time, while domestic company takes more than three years to reduce half of the deviation that has, while multinacional companies take on average one and a half year to reduce the same proportion of the deviation. The validity of the upstream-downstream hypothesis for the effect of internationalization in SOA was confirmed by comparing the results for US companies. Thus, the phenomenon of internationalization increases SOA when companies are from less stable markets, such as Brazil; and it has a less significcative effect when companies are derived from more stable markets, because they already have a high speed of adjustmennt. In addition, the adequacy analysis of the estimators also showed the model pooled OLS (Ordinary Least Squares) presents the highest quality in predicting the SOA than the system GMM (Generalized Method of Moments). For future studies it is suggested to analyze the effect of international event, by itself, and to validate the hypothesis using samples of different markets and the use of other estimators.
Resumo:
Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.
Resumo:
The position of a stationary target can be determined using triangulation in combination with time of arrival measurements at several sensors. In urban environments, none-line-of-sight (NLOS) propagation leads to biased time estimation and thus to inaccurate position estimates. Here, a semi-parametric approach is proposed to mitigate the effects of NLOS propagation. The degree of contamination by NLOS components in the observations, which result in asymmetric noise statistics, is determined and incorporated into the estimator. The proposed method is adequate for environments where the NLOS error plays a dominant role and outperforms previous approaches that assume a symmetric noise statistic.
Resumo:
Extremal quantile index is a concept that the quantile index will drift to zero (or one)
as the sample size increases. The three chapters of my dissertation consists of three
applications of this concept in three distinct econometric problems. In Chapter 2, I
use the concept of extremal quantile index to derive new asymptotic properties and
inference method for quantile treatment effect estimators when the quantile index
of interest is close to zero. In Chapter 3, I rely on the concept of extremal quantile
index to achieve identification at infinity of the sample selection models and propose
a new inference method. Last, in Chapter 4, I use the concept of extremal quantile
index to define an asymptotic trimming scheme which can be used to control the
convergence rate of the estimator of the intercept of binary response models.
Resumo:
My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.
The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.
The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading
due to misclassification of unemployment.
Resumo:
Bayesian nonparametric models, such as the Gaussian process and the Dirichlet process, have been extensively applied for target kinematics modeling in various applications including environmental monitoring, traffic planning, endangered species tracking, dynamic scene analysis, autonomous robot navigation, and human motion modeling. As shown by these successful applications, Bayesian nonparametric models are able to adjust their complexities adaptively from data as necessary, and are resistant to overfitting or underfitting. However, most existing works assume that the sensor measurements used to learn the Bayesian nonparametric target kinematics models are obtained a priori or that the target kinematics can be measured by the sensor at any given time throughout the task. Little work has been done for controlling the sensor with bounded field of view to obtain measurements of mobile targets that are most informative for reducing the uncertainty of the Bayesian nonparametric models. To present the systematic sensor planning approach to leaning Bayesian nonparametric models, the Gaussian process target kinematics model is introduced at first, which is capable of describing time-invariant spatial phenomena, such as ocean currents, temperature distributions and wind velocity fields. The Dirichlet process-Gaussian process target kinematics model is subsequently discussed for modeling mixture of mobile targets, such as pedestrian motion patterns.
Novel information theoretic functions are developed for these introduced Bayesian nonparametric target kinematics models to represent the expected utility of measurements as a function of sensor control inputs and random environmental variables. A Gaussian process expected Kullback Leibler divergence is developed as the expectation of the KL divergence between the current (prior) and posterior Gaussian process target kinematics models with respect to the future measurements. Then, this approach is extended to develop a new information value function that can be used to estimate target kinematics described by a Dirichlet process-Gaussian process mixture model. A theorem is proposed that shows the novel information theoretic functions are bounded. Based on this theorem, efficient estimators of the new information theoretic functions are designed, which are proved to be unbiased with the variance of the resultant approximation error decreasing linearly as the number of samples increases. Computational complexities for optimizing the novel information theoretic functions under sensor dynamics constraints are studied, and are proved to be NP-hard. A cumulative lower bound is then proposed to reduce the computational complexity to polynomial time.
Three sensor planning algorithms are developed according to the assumptions on the target kinematics and the sensor dynamics. For problems where the control space of the sensor is discrete, a greedy algorithm is proposed. The efficiency of the greedy algorithm is demonstrated by a numerical experiment with data of ocean currents obtained by moored buoys. A sweep line algorithm is developed for applications where the sensor control space is continuous and unconstrained. Synthetic simulations as well as physical experiments with ground robots and a surveillance camera are conducted to evaluate the performance of the sweep line algorithm. Moreover, a lexicographic algorithm is designed based on the cumulative lower bound of the novel information theoretic functions, for the scenario where the sensor dynamics are constrained. Numerical experiments with real data collected from indoor pedestrians by a commercial pan-tilt camera are performed to examine the lexicographic algorithm. Results from both the numerical simulations and the physical experiments show that the three sensor planning algorithms proposed in this dissertation based on the novel information theoretic functions are superior at learning the target kinematics with
little or no prior knowledge