952 resultados para Virus Replication
Resumo:
It has been shown previously that recombinant virus-like particles (VLPs) of papillomavirus can induce VLP-specific humoral and cellular immune responses following parenteral administration. To test whether mucosal administration of bovine papillomavirus type 1 (BPV1) VLPs could produce mucosal as well as systemic immune responses to VLPs, 50 mu g chimeric BPV1 VLPs containing an HPV16 E7 CTL epitope (BPVL1/E7 VLP) was administered intranasally to mice. After two immunisations, L1-specific serum IgG and IgA were observed. L1-specific IgG and IgA were also found in respiratory and vaginal secretions. Both serum and mucosal antibody inhibited papillomavirus VLP-induced agglutination of RBC, indicating that the antibody induced by mucosal immunisation may recognize conformational determinants associated with virus neutralisation. For comparison, VLPs were given intramuscularly, and systemic and mucosal immune responses were generally comparable following systemic or mucosal delivery. However, intranasal administration of VLP induced significantly higher local IgA response in lung, suggesting that mucosally delivered HPV VLP may be more effective for mediating local mucosal immune responses. Intranasal immunisation with HPV6b L1 VLP produced VLP-specific T proliferative responses in splenocytes, and immunisation with BPVL1 VLP containing an HPV16 E7 CTL epitope induced E7-specific CTL responses. We conclude that immunisation with papillomavirus VLPs via mucosal and intramuscular routes, without adjuvant, can elicit specific antibody at mucosal surfaces and also systemic VLP epitope specific T cell responses. These findings suggest that mucosally delivered VLPs may offer an alternative HPV VLP vaccine strategy for inducing protective humoral immunity to anogenital HPV infection, together with cell-mediated immune responses to eliminate any cells which become infected. (C) 1998 Academic Press.
Resumo:
Liver samples from rabbits killed by RHDV, collected from five States in Australia in 1996 and 1997 were analysed by RT-PCR. A 398 bp fragment of the capsid protein (VP60) gene was amplified by PCR and directly sequenced. The alignment of the nucleotide and amino acid sequences and their comparison with the original strain of the virus released in Australia indicated genetic changes after two years have been small with 98.2% to 100% identity. The constructed phylogenetic tree suggests slight differences in nucleotide substitutions in various States but there is no clear evidence of clustering of sequences according to their geographic origin. In practical terms, sequencing of viral RNA provides a means of testing the efficacy of further releases and subsequent spread of the virus if such a strategy is employed as a means of enhancing RHD as a biological control of the wild rabbit in Australia.
Resumo:
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Tev sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. Ln support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the Rm-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork. (C) 1999 Academic Press.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
Reverse transcription coupled with polymerase chain reaction and restriction enzyme analysis was used to characterize 12 Drosophila C virus isolates from geographically different regions. A 1.2-kb fragment was amplified from cDNA and profiles from digestion with 20 restriction enzymes were generated. Analysis of the restriction fragment data gave estimates of nucleotide divergence of 0-10% between isolates. The isolates were grouped on the basis of genetic distance estimates derived from the restriction data. For the isolates from which a single genotype could be purified, a geographical pattern in the distribution of viral genotypes was identified. The 4 Moroccan isolates were very closely related to each other, differing in only 1 restriction profile. The 2 Australian isolates were each other's closest relatives, as were the 2 isolates first recovered in France. The PCR-RFLP technique used in this study has provided us with a simple procedure which can be used to characterize DCV isolates. A single enzyme, Tag I, generated 5 distinct and diagnostic restriction fragment patterns, which allowed easy assignment of isolates to one of the five viral genotypes identified in this study. (C) 1999 Academic Press.
Resumo:
Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines. The in vivo impact of m131/129 was investigated by comparing the replication of MCMV mutants having m131/129 deleted (Delta m131/129) with that of wild-type (wt) MCMV. Our studies demonstrate that both wt and Delta m131/129 viruses replicated to equivalent levels during the first 2 to 3 days following in vivo infection. However, histological studies demonstrated that the early inflammatory response elicited by Delta m131/129 was reduced compared with that of wt MCMV. Furthermore, the Delta m131/129 mutants failed to establish a high-titer infection in the salivary glands, These results suggest that m131/129 possesses proinflammatory properties in vivo and is important for the dissemination of MCMV to or infection of the salivary gland. Notably, the Delta m131/129 mutants were cleared more rapidly from the spleen and liver during acute infection compared with wt MCMV. The accelerated clearance of the mutants was dependent on NK cells and cells of the CD4(+) CD8(+) phenotype. These data suggest that m131/129 may also contribute to virus mechanisms of immune system evasion during early infection, possibly through the interference of NK cells and T cells.
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
Subjects with genital warts were immunized three times or more with HPV6b VLPs without adjuvant. All immunized subjects had DTH to HPV6b L1 protein. Of 32 subjects, nine had HPV6b specific antibody prior to immunization and 22 acquired antibody with immunization. VLP specific antibody increased following a single immunization in 6 of 8 subjects with low level antibody at recruitment. Complete regression of genital warts was observed in 25 of 33 evaluable subjects over the 20-week observation period. We conclude that immunization with HPV6b L1 VLPs without adjuvant induces immunity to the L1 protein epitopes recognised during natural infection, and may accelerate regression of warts. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A precise, reproducible deletion made during in vitro reverse transcription of RNA2 from the icosahedral positive-stranded Helicoverpa armigera stunt virus (Tetraviridae) is described. The deletion, located between two hexamer repeats, is a 50-base sequence that includes one copy of the hexamer repeat. Only the Moloney murine leukemia virus reverse transcriptase and its derivative Superscript I, carrying a deletion of the carboxy-terminal RNase H region, showed this response, indicating a template-switching mechanism different from one proposed that involves a RNase H-dependent strand transfer, Superscript II, however, which carries point mutations to reduce RNase H activity, does not cause a deletion. A possible mechanism involves the enzyme pausing at the 3' side of a stem-loop structure and the 3' end of the nascent DNA strand separating from the template and reannealing to the upstream hexamer repeat.
Resumo:
Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Resumo:
Chimeric papillomavirus (PV) virus-like particles (VLPs) based on the bovine papillomavirus type 1 (BPV-1) L1 protein were constructed by replacing the 23-carboxyl-terminal amino acids of the BPV1 major protein L1 with an artificial polytope minigene, containing known CTL epitopes of human PV16 E7 protein, HIV IIIB gp120 P18, Nef, and reverse transcriptase (RT) proteins, and an HPV16 E7 linear B epitope. The CTL epitopes were restricted by three different MHC class 1 alleles (H-2(b), H-2(d), HLA-A*0201). The chimeric L1 protein assembled into VLPs when expressed in SF-9 cells by recombinant baculovirus. After immunization of mice with polytope VLPs in the absence of adjuvant, serum antibodies were detected which reacted with both polytope VLPs and wild-type BPV1L1 VLPs, in addition to the HPV16E7 linear B cell epitope. CTL precursors specific for the HPV16 E7, HIV P18, and RT CTL epitopes were also detected in the spleen of immunized mice. Polytope VLPs can thus deliver multiple B and T epitopes as immunogens to the MHC class I and class II pathways, extending the utility of VLPs as self-adjuvanting immunogen delivery systems. (C) 2000 Academic Press.
Resumo:
Virus-like particles (VLPs) are being currently investigated in vaccines against viral infections in humans. There are different recombinant-protein-expression systems available for obtaining the necessary VLP preparation for vaccination. However, the differences in post-translational modifications of the recombinant proteins obtained and their differences in efficacy in eliciting an anti-viral response in vaccines are not well established. In this study we have compared the posttranslational modifications of human papillomavirus type-6b major capsid protein L1 (HPV 6bL1) expressed using recombinant baculovirus (rBV) in Sf9 (Spodoptera frugiperda) insect cells, with the protein expressed using recombinant vaccinia virus (rVV) in CV-1 kidney epithelial cells, Two-dimensional gel electrophoresis of biosynthetically labelled rBV-expressed HPV 6bL1 showed several post-translationally modified variants of the protein, whereas rVV-expressed HPV 6bL1 showed only a few variants. Phosphorylations were detected at threonine and serine residues for the L1 expressed from rBV compared with phosphorylation at serine residues only for the L1 expressed from rVV. HPV 6bL1 expressed using rBV incorporated [H-3]mannose and [H-3]galactose, whereas HPV 6bL1 expressed using rVV incorporated only [H-3]galactose. We conclude that post-translational modification of recombinant HPV 6bL1 can differ according to the system used for its expression. Since recombinant L1 protein is a potential human-vaccine candidate, the implication of the observed differences in post-translational modifications on immunogenicity of L1 VLPs warrants investigation.
Resumo:
The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.
Resumo:
The Cotesia rubecula polydnavirus gene, CrV1, is expressed in a highly transient fashion. Within four hours after egg deposition and virus infection, tissues of the host caterpillar, Pieris rapae, express high levels of the transcript. Twelve hours after infection no transcripts are visible. We have previously shown that the CrV1 secreted protein is mainly produced in host haemocytes. In haemocytes, immune functions such as phagocytosis and cell spreading are abolished by destabilization of the cell cytoskeleton. To test whether the observed down-regulation of CrV1 transcripts is mediated by transcriptional control or by other factors, such as the disruption of cytoskeleton in CrV1-inactivated cells, we cloned the promoter and the 3' untranslated region of the CrV1 gene to study CrV1 expression. The promoter region of the CrV1 gene was cloned into baculovirus expression systems along with the CAT reporter gene. Molecular analyses showed that the CAT gene under the control of CrV1 promoter is expressed as early as 2 h post infection and continues until late phase of infection suggesting that down-regulation of CrV1 expression in host haemocytes is perhaps mediated by post-transcriptional mechanisms.
Resumo:
We assessed the association between the causative agents of vaginal discharge and pelvic inflammatory disease (PID) among women attending a rural sexually transmitted disease clinic in South Africa; the role played by coinfection with human immunodeficiency virus type 1 (HIV-1) was studied. Vaginal and cervical specimens were obtained to detect Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, and bacterial vaginosis. HIV-1 infection was established by use of serum antibody tests. A total of 696 women with vaginal discharge were recruited, 119 of whom had clinical PID. Patients with trichomoniasis had a significantly higher risk of PID than did women without trichomoniasis (P = .03). PID was not associated with any of the other pathogens. When the patients were stratified according to HIV-1 status, the risk of PID in HIV-1-infected patients with T. vaginalis increased significantly (P = .002); no association was found in patients without HIV-1. T. vaginalis infection of the lower genital tract is associated with a clinical diagnosis of PID in HIV-1-infected women.