945 resultados para Virginia Agricultural, Mechanical, and Tobacco Exposition (1888 : Richmond, Va.)
Resumo:
Tobacco companies are increasingly turning to trade and investment agreements to challenge measures aimed at reducing tobacco use. This study examines their efforts to influence the Trans-Pacific Partnership (TPP), a major trade and investment agreement which may eventually cover 40% of the world's population; focusing on how these efforts might enhance the industry's power to challenge the introduction of plain packaging. Specifically, the paper discusses the implications for public health regulation of Philip Morris International's interest in using the TPP to: shape the bureaucratic structures and decision-making processes of business regulation at the national level; introduce a higher standard of protection for trademarks than is currently provided under the Agreement on Trade Related Aspects of Intellectual Property Rights; and expand the coverage of Investor-State Dispute Settlement which empowers corporations to litigate directly against governments where they are deemed to be in breach of investment agreements. The large number of countries involved in the TPP underlines its risk to the development of tobacco regulation globally.
Resumo:
Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide (KBr) press at different pressures and subjected to Heckel analysis. Swelling studies were performed using 200 mg compacts of the gum (freeze-dried or air-dried) compressed on a KBr press. The mechanical properties of the films of the gum prepared by casting 1 % dispersions of the gum were evaluated using Hounsfield tensiometer. The mechanical properties of grewia gum films were compared with films of pullulan and guar gum which were similarly prepared. The effect of temperature on the water uptake of the compacts was studied and the data subjected to Schott's analysis. Results: Drying conditions had no effect on the yield pressure of the gum compacts as both air-dried and freeze-dried fractions had a yield pressure of 322.6 MPa. The plots based on Schott's equation for the grewia gum samples showed that both samples (freeze-dried and air-dried) exhibited long swelling times. Grewia gum film had a tensile strength of 19.22±3.61 MPa which was similar to that of pullulan films (p > 0.05). It had an elastic modulus of 2.13±0.12 N/mm2 which was significantly lower (p < 0.05) than those of pullulan and guar gum with elastic moduli of 3.33±0.00 and 2.86±0.00 N/mm2, respectively. Conclusion: The type of drying method used does not have any effect on the degree of plasticity of grewia gum compacts. Grewia gum obtained by either drying method exhibited extended swelling duration. Matrix tablet formulations of the gum will likely swell slowly and promote sustained release of drug. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City.
Resumo:
Objectives Understanding the impact of the counterion on the properties of an acidic or basic drug may influence the choice of salt form, especially for less potent drugs with a high drug load per unit dose. The aim of this work was to determine the influence of the hydrogen bonding potential of the counterion on the crystal structure of salts of the poorly soluble, poorly compressible, acidic drug gemfibrozil and to correlate these with mechanical properties. Methods Compacts of the parent drug and the salts were used to determine Young's modulus of elasticity using beam bending tests. Crystal structures were determined previously from X-ray powder diffraction data. Key findings The free acid, tert-butylamine, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropan-1, 3-diol salts had a common crystal packing motif of infinite hydrogen-bonded chains with cross-linking between pairs of adjacent chains. The tromethamine (trsi) salt, with different mechanical properties, had a two-dimensional sheet-like network of hydrogen bonds, with slip planes, forming a stiffer compact. Conclusions The type of counter ion is important in determining mechanical properties and could be selected to afford slip and plastic deformation. © 2010 Royal Pharmaceutical Society of Great Britain.
Resumo:
This study is to theoretically investigate shockwave and microbubble formation due to laser absorption by microparticles and nanoparticles. The initial motivation for this research was to understand the underlying physical mechanisms responsible for laser damage to the retina, as well as the predict threshold levels for damage for laser pulses with of progressively shorter durations. The strongest absorbers in the retina are micron size melanosomes, and their absorption of laser light causes them to accrue very high energy density. I theoretically investigate how this absorbed energy is transferred to the surrounding medium. For a wide range of conditions I calculate shockwave generation and bubble growth as a function of the three parameters; fluence, pulse duration and pulse shape. In order to develop a rigorous physical treatment, the governing equations for the behavior of an absorber and for the surrounding medium are derived. Shockwave theory is investigated and the conclusion is that a shock pressure explanation is likely to be the underlying physical cause of retinal damage at threshold fluences for sub-nanosecond pulses. The same effects are also expected for non-biological micro and nano absorbers. ^
Resumo:
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Resumo:
Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^
Resumo:
Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^
Resumo:
Acknowledgements: We thank Dr. Tamara Ben-Ari and Dr. Jean-Francois Soussana, from INRA in France, for their valuable contributions to the early development stage of this project. We also owe great thanks to Prof. Ib Skovgaard, University of Copenhagen, for giving essential assistance in developing the methods for decomposing emission changes. We also thank the Centre for Regional Change in the Earth System (CRES, www.cres-centre.dk), and the University of Copenhagen for funding the work.
Resumo:
Funding ABK was funded by a studentship from the University of Aberdeen, Institute of Medical Sciences, and the Overseas Research Students Awards Scheme Acknowledgments We are grateful to Dr J.S. Gregory for assistance with Image J and Mr K. Mackenzie for assistance with Micro-CT analysis.
Resumo:
Due to high-speed rotation, the problems about rotor mechanics and dynamics for outer rotor high-speed machine are more serious than conventional ones, in view of above problems the mechanical and dynamics analysis for an outer rotor high-speed permanent magnet claw pole motor are carried out. The rotor stress analytical calculation model was derived, then the stress distribution is calculated by finite element method also, which is coincided with that calculated by analytical model. In addition, the stress distribution of outer rotor yoke and PMs considering centrifugal force and temperature effect has been calculated, some influence factors on rotor stress distribution have been analyzed such as pole-arc coefficient and speed. The rotor natural frequency and critical speed were calculated by vibration mode analysis, and its dynamics characteristics influenced by gyroscope effect were analyzed based on Campbell diagram. Based on the analysis results above an outer rotor permanent magnet high-speed claw pole motor is design and verified.
Resumo:
Insecticide treated bed nets and indoor residual spraying are the most widely used vector control methods in Africa. The World Health Organization now recommends four classes of insecticides for use against adult mosquitoes in public health programs. Of these four classes of insecticides, pyrethroids have become the insecticides of choice in treating mosquito bed nets and in the use of indoor spraying to prevent malaria transmission. Pyrethroids are not only used in malaria control but also in agriculture to protect against pest insects. This concurrent use of pyrethroids in vector control and protection of crops from pests in agriculture may exert selection pressure on mosquito larval population and induce resistance to this class of insecticides. The main objective of our study was to explore the role of agricultural chemicals and the response of mosquitoes to pyrethroids in an area of high malaria transmission.
We used a cross-sectional study design. This was a two-step study involving both mosquitoes and human subjects. In this study, we collected larvae growing in breeding sites affected by different agricultural practices. We used purposive sampling to identify active mosquito breeding sites and then interviewed households adjacent to those breeding sites to learn about their agricultural practices that might influence the response of mosquitoes to pyrethroids. We also performed secondary analysis of larval data from a previous case-control study by Obala et al.
Resumo:
Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.
Resumo:
The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
Resumo:
If magnetism is universal in nature, magnetic materials are ubiquitous. A life without magnetism is unthinkable and a day without the influence of a magnetic material is unimaginable. They find innumerable applications in the form of many passive and active devices namely, compass, electric motor, generator, microphone, loud speaker, maglev train, magnetic resonance imaging, data recording and reading, hadron collider etc. The list is endless. Such is the influence of magnetism and magnetic materials in ones day to day life. With the advent of nanoscience and nanotechnology, along with the emergence of new areas/fields such as spintronics, multiferroics and magnetic refrigeration, the importance of magnetism is ever increasing and attracting the attention of researchers worldwide. The search for a fluid which exhibits magnetism has been on for quite some time. However nature has not bestowed us with a magnetic fluid and hence it has been the dream of many researchers to synthesize a magnetic fluid which is thought to revolutionize many applications based on magnetism. The discovery of a magnetic fluid by Jacob Rabinow in the year 1952 paved the way for a new branch of Physics/Engineering which later became magnetic fluids. This gave birth to a new class of material called magnetorheological materials. Magnetorheological materials are considered superior to electrorheological materials in that magnetorheology is a contactless operation and often inexpensive.Most of the studies in the past on magnetorheological materials were based on magnetic fluids. Recently the focus has been on the solid state analogue of magnetic fluids which are called Magnetorheological Elastomers (MREs). The very word magnetorheological elastomer implies that the rheological properties of these materials can be altered by the influence of an external applied magnetic field and this process is reversible. If the application of an external magnetic field modifies the viscosity of a magnetic fluid, the effect of external magnetic stimuli on a magnetorheological elastomer is in the modification of its stiffness. They are reversible too. Magnetorheological materials exhibit variable stiffness and find applications in adaptive structures of aerospace, automotive civil and electrical engineering applications. The major advantage of MRE is that the particles are not able to settle with time and hence there is no need of a vessel to hold it. The possibility of hazardous waste leakage is no more with a solid MRE. Moreover, the particles in a solid MRE will not affect the performance and durability of the equipment. Usually MR solids work only in the pre yield region while MR fluids, typically work in the post yield state. The application of an external magnetic field modifies the stiffness constant, shear modulus and loss modulus which are complex quantities. In viscoelastic materials a part of the input energy is stored and released during each cycle and a part is dissipated as heat. The storage modulus G′ represents the capacity of the material to store energy of deformation, which contribute to material stiffness. The loss modulusG′′ represents the ability of the material to dissipate the energy of deformation. Such materials can find applications in the form of adaptive vibration absorbers (ATVAs), stiffness tunable mounts and variable impedance surfaces. MREs are an important material for automobile giants and became the focus of this research for eventual automatic vibration control, sound isolation, brakes, clutches and suspension systems