956 resultados para Victims and land restitution land
Resumo:
Digital map products that integrate long-term duck population and land-use data are currently being used to guide conservation program delivery on the Canadian Prairies. However, understanding the inter-relationships between ducks and other grassland bird species would greatly enhance program planning and delivery. We hypothesized that ducks, and Northern Pintail (Anas acuta) in particular, may function as an umbrella guild for the overall breeding habitat quality for other grassland bird species. We compared grassland bird species richness and relative abundance among areas of low, moderate, and high predicted waterfowl breeding densities (i.e., duck density strata) in the southern Missouri Coteau, Saskatchewan. We conducted roadside point counts and delineated habitats within a 400 m radius of each point. The duck high-density stratum supported greater avian species richness and abundance than did the duck low-density stratum. Overall, duck and other grassland bird species richness and abundance were moderately correlated, with all r between 0.37 and 0.69 (all P < 0.05). Although the habitat requirements of Northern Pintail may overlap with those of other grassland endemics, priority grassland bird species richness was only moderately correlated with total pintail abundance in both years, and the abundances of pintail and grassland songbirds listed by the Committee on the Status of Endangered Wildlife in Canada were not correlated. No differences in the mean number of priority grassland species were detected among the strata. Adequate critical habitat for several priority species may not be protected if conservation is focused only in areas of moderate to high wetland density because large tracts of contiguous, dry grassland habitat (e.g., pasture) occur infrequently in high-quality duck habitat.
Resumo:
Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.
Resumo:
Canadian and U.S. federal wildlife agencies completed four decadal surveys, spanning the years 1977 to 2009, to census colonial waterbirds breeding on the Great Lakes and adjoining bodies of water. In this paper, we reports abundance, distribution, and general population trends of three species: Black-crowned Night-Heron (Nycticorax nycticorax), Great Egret (Ardea alba), and Great Blue Heron (Ardea herodias). Estimates of nest numbers ranged from approximately 4000-6100 for the Black-crowned Night-Heron, 250-1900 for the Great Egret, and 3800-6400 for the Great Blue Heron. Average annual rates of change in nest numbers between the first (1977) and fourth (2008) census were −1% for the Black-crowned Night-Heron, +23% for the Great Egret, and −0.27% for the Great Blue Heron. Across the 30-year census, Black-crowned Night-Heron estimates decreased in U.S. (−57%) but increased (+18%) in Canadian waters, Great Egret nests increased 1381% in Canadian waters with a smaller, but still substantial increase in the number of nests at U.S. colonies (+613%), and Great Blue Heron numbers increased 148% in Canadian waters and 713% in U.S. waters. Although a single factor cannot be clearly linked to changes observed in each species’ distribution, hydrological variation, habitat succession, nest competition with Double-crested Cormorants (Phalacrocorax auritus), and land use changes likely all contributed. Management activities should support both breeding and foraging conditions including restoration of early successional habitats and anticipate continued northward expansions in the distributions of these waterbirds.
Resumo:
Satellite observations of convective system properties and lightning flash rate are used to investigate the ability of potential lightning parameterizations to capture both the dominant land-ocean contrast in lightning occurrence and regional differences between Africa, the Amazon and the islands of the maritime continent. As found in previous studies, the radar storm height is tightly correlated with the lightning flash rate. A roughly second order power-law fit to the mean radar echo top height above the 0C isotherm is shown to capture both regional and land-ocean contrasts in lightning occurrence and flash rate using a single set of parameters. Recent developments should soon make it possible to implement a parameterization of this kind in global models. Parameterizations based on cloud top height, convective rain rate and convective rain fraction all require the use of separate fits over land and ocean and fail to capture observed differences between continental regions.
Resumo:
This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.
Resumo:
ATSR-2 active fire data from 1996 to 2000, TRMM VIRS fire counts from 1998 to 2000 and burn scars derived from SPOT VEGETATION ( the Global Burnt Area 2000 product) were mapped for Peru and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability. The fire season in the region mainly occurs between May and October; though some variation was found between the six broad habitat types analysed: desert, grassland, savanna, dry forest, moist forest and yungas (the forested valleys on the eastern slope of the Andes). Increased levels of burning were generally recorded in ATSR-2 and TRMM VIRS fire data in response to the 1997/1998 El Nino, but in some areas the El Nino effect was masked by the more marked influences of socio-economic change on land use and land cover. There were differences between the three global datasets: ATSR-2 under-recorded fires in ecosystems with low net primary productivities. This was because fires are set during the day in this region and, when fuel loads are low, burn out before the ATSR-2 overpass in the region which is between 02.45 h and 03.30 h. TRMM VIRS was able to detect these fires because its overpasses cover the entire diurnal range on a monthly basis. The GBA2000 product has significant errors of commission (particularly areas of shadow in the well-dissected eastern Andes) and omission (in the agricultural zone around Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high-altitude grasslands, where fire is an important pastoral management technique. Fires and burn scars from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for a range of years between 1987 and 2000 were mapped for areas around Parque Nacional Rio Abiseo (Peru) and Parque Nacional Carrasco (Bolivia). Burn scars mapped in the grasslands of these two areas indicate far more burning had taken place than either the fires or the burn scars derived from global datasets. Mean scar sizes are smaller and have a smaller range in size between years the in the study area in Peru (6.6-7.1 ha) than Bolivia (16.9-162.5 ha). Trends in biomass burning in the two highland areas can be explained in terms of the changing socio-economic environments and impacts of conservation. The mismatch between the spatial scale of biomass burning in the high-altitude grasslands and the sensors used to derive global fire products means that an entire component of the fire regime in the region studied is omitted, despite its importance in the farming systems on the Andes.
Resumo:
Currently we have little understanding of the impacts of land use change on soil C stocks in the Brazilian Amazon. Such information is needed to determine impacts'6n the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to predict soil carbon stocks and changes in the Brazilian Amazon during the period between 2000 and 2030, using the GEFSOC soil carbon (C) modelling system. In order to do so, we devised current and future land use scenarios for the Brazilian Amazon, taking into account: (i) deforestation, rates from the past three decades, (ii) census data on land use from 1940 to 2000, including the expansion and intensification of agriculture in the region, (iii) available information on management practices, primarily related to well managed pasture versus degraded pasture and conventional systems versus no-tillage systems for soybean (Glycine max) and (iv) FAO predictions on agricultural land use and land use changes for the years 2015 and 2030. The land use scenarios were integrated with spatially explicit soils data (SOTER database), climate, potential natural vegetation and land management units using the recently developed GEFSOC soil C modelling system. Results are presented in map, table and graph form for the entire Brazilian Amazon for the current situation (1990 and 2000) and the future (2015 and 2030). Results include soil organic C (SOC) stocks and SOC stock change rates estimated by three methods: (i) the Century ecosystem model, (ii) the Rothamsted C model and (iii) the intergovernmental panel on climate change (IPCC) method for assessing soil C at regional scale. In addition, we show estimated values of above and belowground biomass for native vegetation, pasture and soybean. The results on regional SOC stocks compare reasonably well with those based on mapping approaches. The GEFSOC system provided a means of efficiently handling complex interactions among biotic-edapho-climatic conditions (> 363,000 combinations) in a very large area (similar to 500 Mha) such as the Brazilian Amazon. All of the methods used showed a decline in SOC stock for the period studied; Century and RothC simulated values for 2030 being about 7% lower than those in 1990. Values from Century and RothC (30,430 and 25,000 Tg for the 0-20 cm layer for the Brazilian Amazon region were higher than those obtained from the IPCC system (23,400 Tg in the 0-30 cm layer). Finally; our results can help understand the major biogeochemical cycles that influence soil fertility and help devise management strategies that enhance the sustainability of these areas and thus slow further deforestation. (C) 2007 Elsevier B.V. All rights reserved.
Phosphorus dynamics and export in streams draining micro-catchments: Development of empirical models
Resumo:
Annual total phosphorus (TP) export data from 108 European micro-catchments were analyzed against descriptive catchment data on climate (runoff), soil types, catchment size, and land use. The best possible empirical model developed included runoff, proportion of agricultural land and catchment size as explanatory variables but with a low explanation of the variance in the dataset (R-2 = 0.37). Improved country specific empirical models could be developed in some cases. The best example was from Norway where an analysis of TP-export data from 12 predominantly agricultural micro-catchments revealed a relationship explaining 96% of the variance in TP-export. The explanatory variables were in this case soil-P status (P-AL), proportion of organic soil, and the export of suspended sediment. Another example is from Denmark where an empirical model was established for the basic annual average TP-export from 24 catchments with percentage sandy soils, percentage organic soils, runoff, and application of phosphorus in fertilizer and animal manure as explanatory variables (R-2 = 0.97).
Resumo:
Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.
Resumo:
Sustainable development requires the reconciliation of demands for biodiversity conservation and increased agricultural production. Assessing the impact of novel farming practices on biodiversity and ecosystem services is fundamental to this process. Using farmland birds as a model system, we present a generic risk assessment framework that accurately predicts each species' current conservation status and population growth rate associated with past changes in agriculture. We demonstrate its value by assessing the potential impact on biodiversity of two controversial land uses, genetically modified herbicide-tolerant crops and agri-environment schemes. This framework can be used to guide policy and land management decisions and to assess progress toward sustainability targets.
Resumo:
We analyze the publicly released outputs of the simulations performed by climate models (CMs) in preindustrial (PI) and Special Report on Emissions Scenarios A1B (SRESA1B) conditions. In the PI simulations, most CMs feature biases of the order of 1 W m −2 for the net global and the net atmospheric, oceanic, and land energy balances. This does not result from transient effects but depends on the imperfect closure of the energy cycle in the fluid components and on inconsistencies over land. Thus, the planetary emission temperature is underestimated, which may explain the CMs' cold bias. In the PI scenario, CMs agree on the meridional atmospheric enthalpy transport's peak location (around 40°N/S), while discrepancies of ∼20% exist on the intensity. Disagreements on the oceanic transport peaks' location and intensity amount to ∼10° and ∼50%, respectively. In the SRESA1B runs, the atmospheric transport's peak shifts poleward, and its intensity increases up to ∼10% in both hemispheres. In most CMs, the Northern Hemispheric oceanic transport decreases, and the peaks shift equatorward in both hemispheres. The Bjerknes compensation mechanism is active both on climatological and interannual time scales. The total meridional transport peaks around 35° in both hemispheres and scenarios, whereas disagreements on the intensity reach ∼20%. With increased CO 2 concentration, the total transport increases up to ∼10%, thus contributing to polar amplification of global warming. Advances are needed for achieving a self-consistent representation of climate as a nonequilibrium thermodynamical system. This is crucial for improving the CMs' skill in representing past and future climate changes.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.