963 resultados para Vertebrate Paleontology
Resumo:
Transient segmentation in the hindbrain is a fundamental morphogenetic phenomenon in the vertebrate embryo, and the restricted expression of subsets of Hox genes in the developing rhombomeric units and their derivatives is linked with regional specification. Here we show that patterning of the vertebrate hindbrain involves the direct upregulation of the chicken and pufferfish group 2 paralogous genes, Hoxb-2 and Hoxa-2, in rhombomeres 3 and 5 (r3 and r5) by the zinc finger gene Krox-20. We identified evolutionarily conserved r3/r5 enhancers that contain high affinity Krox-20. binding sites capable of mediating transactivation by Krox-20. In addition to conservation of binding sites critical for Krox-20 activity in the chicken Hoxa-2 and pufferfish Hoxb-2 genes, the r3/r5 enhancers are also characterized by the presence of a number of identical motifs likely to be involved in cooperative interactions with Krox-20 during the process of hindbrain patterning in vertebrates.
Resumo:
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.
Resumo:
Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events.
Resumo:
We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death.
Resumo:
According to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when calcium is omitted from the perfusing saline, leading to the notion of a "calcium-independent release" mechanism. Our study shows that the enhancement of synaptic transmission between photoreceptors and horizontal cells of the vertebrate retina induced by low-calcium media is caused by an increase of calcium influx into presynaptic terminals. This paradoxical effect is accounted for by modifications of surface potential on the photoreceptor membrane. Since lowering extracellular calcium concentration may likewise enhance calcium influx into other nerve cells, other experimental observations of "calcium-independent" release may be reaccommodated within the framework of the classical calcium hypothesis without invoking unconventional processes.
Resumo:
We cloned a Drosophila homolog to the sterol responsive element binding proteins (SREBPs). In vertebrates, the SREBPs are regulated by a mechanism that involves cleavage of the protein that normally residues in the cellular membranes and translocation of the released transcription factor into the nucleus. Regulation of the Drosophila factor HLH106 apparently follows the same mechanism, and we find the full-length gene product in the membrane fraction and a shorter cross-reacting form in the nuclear fraction. This nuclear form, which may correspond to proteolytically activated HLH106, is abundant in the blood cell line mbn-2. The general domain structure of HLH106 is very similar to that in SREBP. HLH106 is expressed throughout development, and it is present at high levels in Drosophila cell lines. In contrast to the rat homolog, HLH106 transcripts are not more abundant in adipose tissue than in other tissues.
Resumo:
In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells within the retina change in their response properties, or "competence", during development. These changes presage the ordered appearance of distinct cell types during development and appear to be necessary for the production of the distinct cell types. As the response properties of the cells change, so too do the environmental signals that the cells encounter. Together, intrinsic properties and extrinsic cues direct the choice of cell fate.
Resumo:
The localization, trafficking, and fluorescence of Aequorea green fluorescent protein (GFP) in cultured vertebrate cells transiently transfected with GFP cDNA were studied. Fluorescence of GFP in UV light was found to be strongest when cells were incubated at 30 degrees C but was barely visible at an incubation temperature of 37 degrees C. COS-1 cells, primary chicken embryonic retina cells, and carp epithelial cells were fluorescently labeled under these conditions. GFP was distributed uniformly throughout the cytoplasm and nucleus independent of cell type examined. When GFP was fused to PML protooncogene product, fluorescence was detected in a unique nuclear organelle pattern indistinguishable from that of PML protein, showing the potential use of GFP as a fluorescent tag. To analyze both function and intracellular trafficking of proteins fused to GFP, a GFP-human glucocorticoid receptor fusion construct was prepared. The GFP-human glucocorticoid receptor efficiently transactivated the mouse mammary tumor virus promoter in response to dexamethasone at 30 degrees C but not at 37 degrees C, indicating that temperature is important, even for function of the GFP fusion protein. The dexamethasone-induced translocation of GFP-human glucocorticoid receptor from cytoplasm to nucleus was complete within 15 min; the translocation could be monitored in a single living cell in real time.
Resumo:
A mixed-class alcohol dehydrogenase has been characterized from avian liver. Its functional properties resemble the classical class I type enzyme in livers of humans and animals by exhibiting low Km and kcat values with alcohols (Km = 0.7 mM with ethanol) and low Ki values with 4-methylpyrazole (4 microM). These values are markedly different from corresponding parameters of class II and III enzymes. In contrast, the primary structure of this avian liver alcohol dehydrogenase reveals an overall relationship closer to class II and to some extent class III (69 and 65% residue identities, respectively) than to class I or the other classes of the human alcohol dehydrogenases (52-61%), the presence of an insertion (four positions in a segment close to position 120) as in class II but in no other class of the human enzymes, and the presence of several active site residues considered typical of the class II enzyme. Hence, the avian enzyme has mixed-class properties, being functionally similar to class I, yet structurally similar to class II, with which it also clusters in phylogenetic trees of characterized vertebrate alcohol dehydrogenases. Comparisons reveal that the class II enzyme is approximately 25% more variable than the "variable" class I enzyme, which itself is more variable than the "constant" class III enzyme. The overall extreme, and the unusual chromatographic behavior may explain why the class II enzyme has previously not been found outside mammals. The properties define a consistent pattern with apparently repeated generation of novel enzyme activities after separate gene duplications.
Resumo:
Vertebrate hematopoietic stem cells are derived from vental mesoderm, which is postulated to migrate to both extra- and intraembryonic positions during gastrula and neurula stages. Extraembryonic migration has previously been documented, but the origin and migration of intraembryonic hematopoietic cells have not been visualized. The zebrafish and most other teleosts do not form yolk sac blood islands during early embryogenesis, but instead hematopoiesis occurs solely in a dorsal location known as the intermediate cell mass (IM) or Oellacher. In this report, we have isolated cDNAs encoding zebrafish homologs of the hematopoietic transcription factors GATA-1 and GATA-2 and have used these markers to determine that the IM is formed from mesodermal cells in a posterior-lateral position on the yolk syncytial layer of the gastrula yolk sac. Surprisingly, cells of the IM then migrate anteriorly through most of the body length prior to the onset of active circulation and exit onto the yolk sac. These findings support a hypothesis in which the hematopoietic program of vertebrates is established by variations in homologous migration pathways of extra- and intraembryonic progenitors.
Resumo:
A cyclophilin (CyP) purified to homogeneity from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 had a molecular mass of 20.5 kDa and a pI of 8.1. The protein catalyzed the isomerization of the prolyl peptide bond of N-succinyl-Ala-Ala-(cis,trans)-Pro-Phe p-nitroanilide with a kcat/Km value of 9.3 x 10(6) M-1.s-1 at 10 degrees C and pH 7.8. Cyclosporin A strongly inhibited this peptidylprolyl cis-trans isomerase activity with an IC50 of 19.6 nM. The sequence of the first 30 N-terminal amino acids of this CyP had high homology with the N-terminal sequences of other eukaryotic CyPs. By use of a DNA hybridization probe amplified by PCR with degenerate oligonucleotide primers designed based on the amino acid sequences of the N terminus of this CyP and highly conserved internal regions of other CyPs, a full-length cDNA clone was isolated. It possessed an open reading frame encoding a polypeptide of 203 amino acids with a calculated molecular weight of 21,969, containing a putative hydrophobic signal peptide sequence of 22 amino acids preceding the N terminus of the mature enzyme and a C-terminal sequence, Lys-Ala-Glu-Leu, characteristic of an endoplasmic reticulum retention signal. The Orpinomyces PC-2 CyP is a typical type B CyP. The amino acid sequence of the Orpinomyces CyP exhibits striking degrees of identity with the corresponding human (70%), bovine (69%), mouse (68%), chicken (66%), maize (61%), and yeast (54%) proteins. Phylogenetic analysis based on the CyP sequences indicated that the evolutionary origin of the Orpinomyces CyP was closely related with CyPs of animals.
Resumo:
no.9(1927)
Resumo:
v.3:no.8(1970)