978 resultados para Vector Auto Regression
Auto-Oil Program Phase II Heavy Hydrocarbon Study: Analysis of Engine-Out Hydrocarbon Emissions Data
Resumo:
The paper presents a vector model for a Brushless Doubly-Fed Machine (BDFM). The BDFM has 4 and 8 pole stator windings and a nested-loop rotor cage. The rotor cage has six nests equally spaced around the circumference and each nest comprises three loops. All the rotor loops are short circuited via a common end-ring at one end. The vector model is derived based on the electrical equations of the machine and appropriate vector transformations. In contrast to the stator, there is no three phase circuit in the rotor. Therefore, the vector transformations suitable for three phase circuits can not be utilised for the rotor circuit. A new vector transformation is employed for the rotor circuit quantities. The approach presented in this paper can be extended for a BDFM with any stator poles combination and any number of loops per nest. Simulation results from the model implemented in Simulink are presented. © 2008 IEEE.
Resumo:
The paper presents the vector model of the Brushless Doubly-Fed Machine (BDFM) in the rotor flux oriented reference frame. The rotor flux oriented reference frame is well known in the standard AC machines analysis and control. Similar benefits can be sought by employing this method for the BDFM The vector model is implemented in MATLAB/SIVIULINK to simulate the BDFM dynamic performance under different operating conditions. The predictions from the vector model are compared to those from the coupled circuit model in simulation. The results are shown for the cascade mode of operation. © 2008 IEEE.
Resumo:
This paper will provide a rationale for developing control systems based on the availability of automated identification (Auto ID) information provision. Much of the Auto-ID research has to date focussed on developing the essential infrastructure for dynamically extracting, networking and storing product data. These developments will help to revolutionise the accuracy, quality and timeliness of data acquired by Business Information Systems and should lead to major cost savings and performance improvements as a result. This paper introduces an additional phase of Auto ID research and development in which the nature of control system decisions is reconsidered in the light of the availability of ubiquitous, unique, item-level information. The paper will: (i) Indicate why the availability of ubiquitous, unique, item-level data can enable enhanced and fundamentally different control approaches and highlight potential benefits from control systems incorporating this Auto ID data (ii) Demonstrate what is required to develop control systems based around the availability of Auto ID data. (iii) Outline the research challenges in determining how such systems will be developed.
Resumo:
This paper proposed a novel control scheme for operating the Single Phase Brushless Doubly-Fed Machine (SPB) based on Stator-Flux-Oriented control algorithm. The SPB is a new type of Brushless Doubly-Fed Machine (BDFM) which shows a potential in applications which require adjustable speed such as Wind Power generation and speed adjustable Drive. The SPB can be applied to single-phase power system and the lower cost of the SPB makes the SPB suitable for low-rated power conversion applications. This paper develops the control scheme of the SPB with explicit mathematical analysis and block diagram of the controller. Experimental verification is also given. © 2011 IEEE.
Resumo:
This paper describes a structured SVM framework suitable for noise-robust medium/large vocabulary speech recognition. Several theoretical and practical extensions to previous work on small vocabulary tasks are detailed. The joint feature space based on word models is extended to allow context-dependent triphone models to be used. By interpreting the structured SVM as a large margin log-linear model, illustrates that there is an implicit assumption that the prior of the discriminative parameter is a zero mean Gaussian. However, depending on the definition of likelihood feature space, a non-zero prior may be more appropriate. A general Gaussian prior is incorporated into the large margin training criterion in a form that allows the cutting plan algorithm to be directly applied. To further speed up the training process, 1-slack algorithm, caching competing hypothesis and parallelization strategies are also proposed. The performance of structured SVMs is evaluated on noise corrupted medium vocabulary speech recognition task: AURORA 4. © 2011 IEEE.
Resumo:
Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.
Resumo:
We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration. © 2012 Optical Society of America.