986 resultados para Valence-bond State
Resumo:
Purpose: To evaluate the bond strength of glass fiber posts to intraradicular dentin when cemented with self-etching and self-adhesive resin cements. Materials and Methods: Forty-eight single-rooted human teeth were decoronated, endodontically treated, post-space prepared and divided into 8 groups (n = 6). The glass fiber posts used were: Exacto (EA) (Angelus) and everStick (ES) (StichTeck), which were cemented with two self-adhesive resin cements: BisCem (BIS) (Bisco) and Rely-X Unicem (UNI) (3M/ESPE), and two self-etching resin cements: Esthetic Cementing System NAC100 (NAC) (Kuraray) and Panavia-F (PAN) (Kuraray). Specimens were thermocycled between 5 degrees C and 55 degrees C for 1000 cycles and stored in water at 37 degrees C for 1 month. Four 1-mm-thick (in cross section) rods were obtained from the cervical region of the roots. Specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength (mu TBS) data were analyzed with two-way ANOVA and Tukey`s tests. Results: Means (and SD) of mu TBS (MPa) were: EA/PAN: 10.3 (4.1), EA/NAC: 14 (5.1) EA/BIS: 16.4 (4.8), EA/UNI: 19.8 (5.1), ES/PAN: 25.9 (6.1), ES/NAC: 29.1 (7), ES/BIS: 28.9 (6), ES/UNI: 30.5 (6.6). ANOVA indicated significant differences among the groups (p < 0.001). Mean mu TBS values obtained with ES post were significantly higher than those obtained with EA (p < 0.001). For EA, Tukey`s test indicated that higher mu TBS means were obtained with the self-adhesive resin cements (BIS and UNI), which were statistically significantly different (p < 0.05) from values obtained with the self-etching resin cements (PAN and NAC). Different cements had no significant effects on the bond strength values of ES post (p > 0.05). mu TBS values obtained with ES post were significantly higher than those obtained with EA post irrespective of the resin cement used. Conclusion: everStick posts resulted in the highest mean mu TBS values with all cements. Self-adhesive cements performed well in terms of bond strength.
Resumo:
Purpose: The purpose of this study was to evaluate the thermocycling effects and shear bond strength of acrylic resin teeth to denture base resins. Materials and Methods: Three acrylic teeth (Biotone, Trilux, Ivoclar) were chosen for bonding to four denture base resins: microwave-polymerized (Acron MC), heat-polymerized (Lucitone 550 and QC-20), and light-polymerized (Versyo. bond). Twenty specimens were produced for each denture base/acrylic tooth combination and were divided into two groups (n = 10): without thermocycling (control groups) and thermocycled groups submitted to 5000 cycles between 4 and 60 degrees C. Shear strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 1 mm/min. Statistical analysis of the results was carried out with three-way ANOVA and Bonferroni`s multiple comparisons post hoc analysis for test groups (alpha = 0.05). Results: The shear bond strengths of Lucitone/Biotone, Lucitone/Trilux, and Versyo/Ivoclar specimens were significantly decreased by thermocycling, compared with the corresponding control groups (p < 0.05). The means of Acron/Ivoclar and Lucitone/Ivoclar specimens increased after thermocycling (p < 0.05). The highest mean shear bond strength value was observed with Lucitone/Biotone in the control group (14.54 MPa) and the lowest with QC-20/Trilux in the thermocycled group (3.69 MPa). Conclusion: Some acrylic tooth/denture base resin combinations can be more affected by thermocycling; effects vary based upon the materials used.
Resumo:
Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student`s test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Resumo:
A method is described whereby sedimentation velocity is combined with equilibrium dialysis to determine the net charge (valence) of a protein by using chromate as an indicator ion for assessing the extent of the Donnan redistribution of small ions. The procedure has been used in experiments on bovine serum albumin under slightly alkaline conditions (pH 8.0, I 0.05) to illustrate its application to a system in which the indicator ion and protein both bear net negative charge and on lysozyme under slightly acidic conditions (pH 5.0, I 0.10) to illustrate the situation where chromate is a counterion. (C) 2001 Elsevier Science.
Resumo:
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Resumo:
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu-II complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) Angstrom, b = 18.364(3) Angstrom, c = 15.674(3) Angstrom, beta = 94.73(2)degrees, Z = 4; {[Cu-2(L-4)(CO3)](2)}(ClO4)(4). 4H(2)O, C40H100Cl4Cu4N12O26, triclinic, P (1) over bar, a = 9.4888(8) Angstrom, b=13.353(1) Angstrom,. c = 15.329(1) Angstrom, alpha = 111.250(7)degrees, beta = 90.068(8)degrees, gamma = 105.081(8)degrees, Z=1; [Cu-2(L-5)(OH2)(2)](ClO4)(4), C(13)H(36)Cl(4)Cu(2)Z(6)O(18), monoclinic, P2(1)/c, a = 7.225(2) Angstrom. b = 8.5555(5) Angstrom, c = 23.134(8) Angstrom, beta = 92.37(1)degrees, Z = 2; [Cu-2(L-6)(OH2)(2)](ClO4)(4). 3H(2)O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) Angstrom, b = 7.6810(7) Angstrom, c = 29.370(1) Angstrom, beta = 100.42(2)degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.
Resumo:
The radiation chemistry of FEP copolymer with a mole fraction TFE of 0.90 has been studied using Co-60 gamma -radiation at temperatures of 300 and 363 K. New structure formation in the copolymers was analysed by solid state F-19 NMR. New chain scission products were the principal new structures found. The G-value for the formation of new -CF3 groups was 2.2 and 2.1 for the radiolysis of FEP at 300 and 363 K, respectively, and the G-value for the loss of original -CF3 groups was G(-CF3) = 1.0 and 0.9 at these two temperatures, respectively. There was a nett loss of -CF- groups on irradiation, with G(-CF) of 1.3 and 0.9 at 300 and 363 K, respectively. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Bond's method for ball mill scale-up only gives the mill power draw for a given duty. This method is incompatible with computer modelling and simulation techniques. It might not be applicable for the design of fine grinding ball mills and ball mills preceded by autogenous and semi-autogenous grinding mills. Model-based ball mill scale-up methods have not been validated using a wide range of full-scale circuit data. Their accuracy is therefore questionable. Some of these methods also need expensive pilot testing. A new ball mill scale-up procedure is developed which does not have these limitations. This procedure uses data from two laboratory tests to determine the parameters of a ball mill model. A set of scale-up criteria then scales-up these parameters. The procedure uses the scaled-up parameters to simulate the steady state performance of full-scale mill circuits. At the end of the simulation, the scale-up procedure gives the size distribution, the volumetric flowrate and the mass flowrate of all the streams in the circuit, and the mill power draw.
Briefing: Factored material properties and limit state loads-unlikely extreme or impossible pretense
Resumo:
In the limit state design (LSD) method each design criterion is formally stated and assessed using a performance function. The performance function defines the relationship between the design parameters and the design criterion. In practice, LSD involves factoring up loads and factoring down calculated strengths and material parameters. This provides a convenient way to carry out routine probabilistic-based design. The factors are statistically calculated to produce a design with an acceptably low probability of failure. Hence the ultimate load and the design material properties are mathematical concepts that have no physical interpretation. They may be physically impossible. Similarly, the appropriate analysis model is also defined by the performance function and may not describe the real behaviour at the perceived physical equivalent limit condition. These points must be understood to avoid confusion in the discussion and application of partial factor LSD methods.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.