929 resultados para Vaccination coverage
Resumo:
Land use science has traditionally used case-study approaches for in-depth investigation of land use change processes and impacts. Meta-studies synthesize findings across case-study evidence to identify general patterns. In this paper, we provide a review of meta-studies in land use science. Various meta-studies have been conducted, which synthesize deforestation and agricultural land use change processes, while other important changes, such as urbanization, wetland conversion, and grassland dynamics have hardly been addressed. Meta-studies of land use change impacts focus mostly on biodiversity and biogeochemical cycles, while meta-studies of socioeconomic consequences are rare. Land use change processes and land use change impacts are generally addressed in isolation, while only few studies considered trajectories of drivers through changes to their impacts and their potential feedbacks. We provide a conceptual framework for linking meta-studies of land use change processes and impacts for the analysis of coupled human–environmental systems. Moreover, we provide suggestions for combining meta-studies of different land use change processes to develop a more integrated theory of land use change, and for combining meta-studies of land use change impacts to identify tradeoffs between different impacts. Land use science can benefit from an improved conceptualization of land use change processes and their impacts, and from new methods that combine meta-study findings to advance our understanding of human–environmental systems.
Resumo:
Buruli ulcer, caused by infection with Mycobacterium ulcerans, is a necrotizing disease of the skin and subcutaneous tissue, which is most prevalent in rural regions of West African countries. The majority of clinical presentations seen in patients are ulcers on limbs that can be treated by eight weeks of antibiotic therapy. Nevertheless, scarring and permanent disabilities occur frequently and Buruli ulcer still causes high morbidity. A vaccine against the disease is so far not available but would be of great benefit if used for prophylaxis as well as therapy. In the present study, vesicular stomatitis virus-based RNA replicon particles encoding the M. ulcerans proteins MUL2232 and MUL3720 were generated and the expression of the recombinant antigens characterized in vitro. Immunisation of mice with the recombinant replicon particles elicited antibodies that reacted with the endogenous antigens of M. ulcerans cells. A prime-boost immunization regimen with MUL2232-recombinant replicon particles and recombinant MUL2232 protein induced a strong immune response but only slightly reduced bacterial multiplication in a mouse model of M. ulcerans infection. We conclude that a monovalent vaccine based on the MUL2232 antigen will probably not sufficiently control M. ulcerans infection in humans.
Resumo:
Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.
Resumo:
Hip dysplasia is characterized by insufficient femoral head coverage (FHC). Quantification of FHC is of importance as the underlying goal of the surgery to treat hip dysplasia is to restore a normal acetabular morphology and thereby to improve FHC. Unlike a pure 2D X-ray radiograph-based measurement method or a pure 3D CT-based measurement method, previously we presented a 2.5D method to quantify FHC from a single anteriorposterior (AP) pelvic radiograph. In this study, we first quantified and compared 3D FHC between a normal control group and a patient group using a CT-based measurement method. Taking the CT-based 3D measurements of FHC as the gold standard, we further quantified the bias, precision and correlation between the 2.5D measurements and the 3D measurements on both the control group and the patient group. Based on digitally reconstructed radiographs (DRRs), we investigated the influence of the pelvic tilt on the 2.5D measurements of FHC. The intraclass correlation coefficients (ICCs) for absolute agreement was used to quantify interobserver reliability and intraobserver reproducibility of the 2.5D measurement technique. The Pearson correlation coefficient, r, was used to determine the strength of the linear association between the 2.5D and the 3D measurements. Student's t-test was used to determine whether the differences between different measurements were statistically significant. Our experimental results demonstrated that both the interobserver reliability and the intraobserver reproducibility of the 2.5D measurement technique were very good (ICCs > 0.8). Regression analysis indicated that the correlation was very strong between the 2.5D and the 3D measurements (r = 0.89, p < 0.001). Student's t-test showed that there were no statistically significant differences between the 2.5D and the 3D measurements of FHC on the patient group (p > 0.05). The results of this study provided convincing evidence demonstrating the validity of the 2.5D measurements of FHC from a single AP pelvic radiograph and proved that it could serve as a surrogate for 3D CT-based measurements. Thus it may be possible to use this method to avoid a CT scan for the purpose of estimating 3D FHC in diagnosis and post-operative treatment evaluation of patients with hip dysplasia.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is a serious respiratory disease of cattle caused by Mycoplasma mycoides subsp. mycoides. Current vaccines against CBPP induce short-lived immunity and can cause severe postvaccine reactions. Previous studies have identified the N terminus of the transmembrane lipoprotein Q (LppQ-N') of M. mycoides subsp. mycoides as the major antigen and a possible virulence factor. We therefore immunized cattle with purified recombinant LppQ-N' formulated in Freund's adjuvant and challenged them with M. mycoides subsp. mycoides. Vaccinated animals showed a strong seroconversion to LppQ, but they exhibited significantly enhanced postchallenge glomerulonephritis compared to the placebo group (P = 0.021). Glomerulonephritis was characterized by features that suggested the development of antigen-antibody immune complexes. Clinical signs and gross pathological scores did not significantly differ between vaccinated and placebo groups. These findings reveal for the first time the pathogenesis of enhanced disease as a result of antibodies against LppQ during challenge and also argue against inclusion of LppQ-N' in a future subunit vaccine for CBPP.
Resumo:
Neospora caninum is an apicomplexan parasite that is capable of infecting, a wide range of tissues. The fact that Neospora represents an important abortion-causing parasite in cattle has transformed neosporosis research from an earlier, rather esoteric field, to a significant research topic, and considerable investments have been made in the last years to develop an efficacious vaccine or other means of intervention that would prevent infection and abortion due to N. caninum infection in cattle. Antigenic molecules associated with proteins involved in adhesion/invasion or other parasite-host-cell interaction processes can confer protection against Neospora caninum infection, and such proteins represent valuable targets for the development of a vaccine to limit economical losses due to neosporosis. Although not ideal, small laboratory animal models that mimic cerebral infection, acute disease and fetal loss upon infection during pregnancy have been used for the assessment of vaccine candidates, in parallel with studies on experimental infections in cattle. Herein, we review and critically assess these vaccination approaches and discuss potential options for improvements.
Resumo:
Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution.
Resumo:
Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^
Resumo:
This paper estimates the aggregate demand for private health insurance coverage in the U.S. using an error-correction model and by recognizing that people are without private health insurance for voluntary, structural, frictional, and cyclical reasons and because of public alternatives. Insurance coverage is measured both by the percentage of the population enrolled in private health insurance plans and the completeness of the insurance coverage. Annual data for the period 1966-1999 are used and both short and long run price and income elasticities of demand are estimated. The empirical findings indicate that both private insurance enrollment and completeness are relatively inelastic with respect to changes in price and income in the short and long run. Moreover, private health insurance enrollment is found to be inversely related to the poverty rate, particularly in the short-run. Finally, our results suggest that an increase in the number cyclically uninsured generates less of a welfare loss than an increase in the structurally uninsured.
Resumo:
Melanoma patients with metastases have a very low survival rate and limited treatment options. Therefore, the targeting of melanoma cells when they begin to invade and metastasize would be beneficial. A specific adhesion molecule that is upregulated at the vertical growth phase is the melanoma cell adhesion molecule (MCAM/MUC18). MUC18 is expressed in late primary and metastatic melanoma with little or no expression on normal melanocytes. MUC18 has been demonstrated to have a role in the progression and metastasis of human melanoma. We utilized the alphavirus-based DNA plasmid, SINCp, encoding full length human MUC18 for vaccination against B16F10 murine melanoma cells expressing human MUC18. The alphavirus-based DNA plasmid leads to the expression of large quantities of heterologous protein as well as danger signals due to dsRNA intermediates produced during viral replication. In a preventative primary tumor model and an experimental tumor model, mice vaccinated against human MUC18 had decreased tumor incidence and reduced lung metastases when challenged with B16F10 murine melanoma cells expressing human MUC18. In a therapeutic tumor model, vaccination against human MUC18 reduced the tumor burden in mice with pre-existing lung metastases but did not have a significant effect on therapeutic vaccination in a primary tumor model. We next cloned murine MUC18 into SINCp for use in determining the efficacy of vaccination against murine MUC18 in a syngeneic animal model. Mice were vaccinated and challenged in a primary tumor and experimental metastasis model. In both models, vaccination significantly reduced tumor incidence and lung metastases. Humoral and cell-mediated responses were then determined. Flow cytometry and immunohistochemistry showed that specific antibodies were developed from vaccination against both human and murine MUC18. IgG2a antibody isotype was also developed indicating a Th1 type response. ELISPOT results showed that mice vaccinated against human MUC18 created a specific T cell response to targets expressing human MUC18. Mice vaccinated against murine MUC18 raised specific effector cells against target cells expressing murine MUC18 in a cell killing assay. These results indicate that vaccination against MUC18 developed specific immune responses against MUC18 and were effective in controlling tumor growth in melanoma expressing MUC18. ^