980 resultados para Tyrosine recombinase
Resumo:
BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.
Resumo:
The aim of this study was to search for plasmid-encoded quinolone resistance determinants QnrA and QnrS in fluoroquinolone-resistant and extended-spectrum beta-lactamase (ESBL)-producing enterobacterial isolates recovered in Sydney, Australia, in 2002. Twenty-three fluoroquinolone-resistant, of which 16 were also ESBL-positive, enterobacterial and nonrelated isolates were studied. PCR with primers specific for qnrA and qnrS genes and primers specific for a series of ESBL genes were used. A qnrA gene was identified in two ESBL-positive isolates, whereas no qnrS-positive strain was found. The QnrA1 determinant was identified in an Enterobacter cloacae isolate and in a carbapenem-resistant Klebsiella pneumoniae isolate, both of which expressed the same ESBL SHV- 12. Whereas no plasmid was identified in the E. cloacae isolate, K. pneumoniae K149 possessed two conjugative plasmids, one that harbored the qnrA and bla (SHV)-12 genes whereas the other expressed the carbapenemase gene bla (IMP-4). The qnrA gene, was located in both cases downstream of the orf513 recombinase gene and upstream of the qnrA1 gene, a structure identical to that found in sul1-type integron In36 and qnrA-positive strains from Shanghai, China. However, the gene cassettes of the sul1-type integrons were different. This study identified the first plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Australia.
Resumo:
BACKGROUND: Glioblastoma is a highly vascularised tumour with a high expression of both vascular endothelial growth factor (VEGF) and VEGFR. PTK787/ZK222584 (PTK/ZK, vatalanib), a multiple VEGF receptor inhibitor, blocks the intracellular tyrosine kinase activity of all known VEGF receptors and is therefore suitable for long-term therapy of pathologic tumour neovascularisation. PATIENTS AND METHODS: The study was designed as an open-label, phase I/II study. A classic 3+3 design was selected. PTK/ZK was added to standard concomitant and adjuvant treatment, beginning in the morning of day 1 of radiotherapy (RT), and given continuously until disease progression or toxicity. PTK/ZK doses started from 500 mg with subsequent escalations to 1000 and 1250 mg/d. Adjuvant or maintenance PTK after the end of radiochemotherapy was given at a previously established dose of 750 mg twice daily continuously with TMZ at the standard adjuvant dose. RESULTS: Twenty patients were enrolled. Dose-limiting toxicities at a once daily dose of 1250 mg were grade 3 diarrhoea (n=1), grade 3 ALT increase (n=2), and myelosuppression with grade 4 thrombocytopenia and neutropenia (n=1). The recommended dose of PTK/ZK in combination with radiotherapy and temozolomide (TMZ) is 1000 mg once a day. This treatment is safe and well tolerated. CONCLUSION: In our phase I study once daily administration of up to 1000 mg of PTK/ZK in conjunction with concomitant temozolomide and radiotherapy was feasible and safe. Prolonged administration of this oral agent is manageable. The planned randomised phase II trial was discontinued right at its onset due to industry decision not to further develop this agent.
Resumo:
BACKGROUND The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-gamma-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-gamma treatment in human melanoma cell lines. METHODS Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan(R) Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-gamma-treated cells. RESULTS Altered IFN-gamma mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-alpha led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-gamma treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-alpha treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-gamma in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-gamma signaling pathway. CONCLUSION We observed two distinct mechanisms of loss of IFN-gamma inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-gamma signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence of IFN-gamma-mediated HLA class I expression in ESTDAB-159 cells is due to epigenetic blocking of IFN-regulatory factor 1 (IRF-1) transactivation.
Resumo:
Trastuzumab and gemcitabine are two active drugs for meta-static breast cancer (MBC) treatment. We conducted a retrospective study of this combination in patients with Her2+ MBC in our hospital.
Resumo:
Objective: To study the efficacy of different regimens of treatment based on trastuzumab in patients with Her2+ metastatic breast cancer (MBC).
Resumo:
Gastrointestinal stromal tumours (GIST), despite being rare, pose a relevant medical problem from the viewpoint of diagnosis and management. GIST are fragile, liable to metastasize and often located in delicate structures. Surgical options, therefore, are limited. In the last decade an improved understanding of the molecular mechanisms of the disease has resulted in novel modes of treatment. The introduction of systemic tyrosine kinase inhibitor therapy with imatinib has significantly improved the outcome of the disease and prolonged the survival of GIST patients. For many patients the acute threat of a deadly cancer has been transformed into a manageable chronic condition. Drug safety, tolerability and compliance, subjects of concern in all long-term therapies, have proven to be acceptable for the tyrosine kinase inhibitor imatinib. The present paper provides a compact overview of the epidemiology, pathophysiology and morphology of GIST, with special reference to the underlying molecular biology. Relevant aspects of diagnosis, therapy and monitoring of the disease are reviewed with particular emphasis on the available clinical evidence and recent guidelines.
Resumo:
To study the interaction of the TCR with its ligand, the complex of a MHC molecule and an antigenic peptide, we modified a TCR contact residue of a H-2Kd-restricted antigenic peptide with photoreactive 4-azidobenzoic acid. The photoreactive group was a critical component of the epitope recognized by CTL clones derived from mice immunized with such a peptide derivative. The majority of these clones expressed V beta 1-encoded beta chains that were paired with J alpha TA28-encoded alpha chains. For one of these TCR, the photoaffinity labeled sites were mapped on the alpha chain as a J alpha TA28-encoded tryptophan and on the beta chain as a residue of the C' strand of V beta 1. Molecular modeling of this TCR suggested the presence of a hydrophobic pocket that harbors this tryptophan as well as a tyrosine on the C' strand of V beta 1 between which the photoreactive side chain inserts. It is concluded that this avid binding principle may account for the preferential selection of V beta 1 and J alpha TA28-encoded TCR.
Resumo:
In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.
Resumo:
Introduction Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez l'enfant. Sa présentation clinique est très hétérogène, allant d'une tumeur localisée à une atteinte métastatique sévère. Malgré des traitements agressifs, environ 55% des NB de hauts risques sont actuellement résistants aux thérapies. L'espoir réside dans le développement de traitements ciblant les mécanismes moléculaires responsables du développement et de la progression du NB. Le gène Anaplastic Lymphoma Kinase (ALK) codant pour un récepteur tyrosine kinase a été particulièrement étudié ces dernières années car il est muté, amplifié ou surexprimé dans une majorité des NBs. Le but de ce projet était d'investiguer le rôle de ALK-wt, ainsi que de ces deux plus fréquentes mutations, ALK- F1174L et ALK-R1245Q, dans l'oncogenèse du NB. Le NB étant originaire des cellules de la crête neurale, nous avons analysé le potentiel oncogénique de ces différentes formes de ALK dans des cellules progénitrices de la crête neurale (NCPC). Méthode Des NCPC de souris (JoMal), possédant un c-MycER inductible pour leur maintien en culture in vitro, ont été transduites par un rétrovirus permettant l'expression stable de ALK-wt, ALK-F1174L et ALK-R1245Q. Des tests in vitro ont d'abord été effectués pour tester le système c-MycER, la stabilité de nos cellules transduites, leur phénotype, leur capacité de croissance et leur tumorigénicité. Les cellules transduites ont ensuite été injectées dans des souris immunosupprimées en sous-cutané, puis en orthotopique, c'est-à-dire dans leur glande surrénale, afin de mesurer leur tumorigénicité in vivo. Résultats La transduction et l'expression stable de ALK n'ont pas modifié le phénotype indifférencié des JoMal, ni de manière significative la capacité de croissance des cellules in vitro en absence d'activation de c-MycER. Par contre, lorsque c-MycER est actif, les cellules porteuses des mutations Fl 174L et R1245Q ont montré une meilleure capacité de prolifération et de formation de colonies, par rapport aux JoMal-ALK-wt et aux cellules contrôles en culture 3D dans de la méthylcellulose et dans un test de formation de neurosphères. In vivo, les souris injectées avec les cellules JoMal-ALK- F1174L en sous-cutané ou dans la glande surrénale ont rapidement développé des tumeurs, suivies par le groupe JoMal-ALK-R1245Q et le groupe JoMal-ALK-wt, alors que les groupes de souris contrôles n'ont présenté aucune tumeur. En orthotopique, nous avons obtenu 5/6 tumeurs ALK-F1174L, 7/7 tumeurs ALK-R1245Q et 6/7 tumeurs ALK-wt. Les tumeurs sous-cutanées ne présentaient pas de différences morphologiques et histologiques entre les différents groupes et montraient une histologie compatible avec un NB. Les tumeurs orthotopiques restent encore à analyser. Conclusion Cette étude a permis de démontrer que les mutations activatrices Fl 174L et R1245Q ont des propriétés tumorigéniques in vitro dans des NCPC et in vivo tandis que la forme sauvage de ALK montre une capacité oncogénique uniquement in vivo. Bien que la caractérisation des tumeurs orthotopiques n'a pas encore été effectuée, l'analyse des tumeurs sous-cutanées nous suggère que l'expression de ALK- wt ou muté est suffisante pour induire la formation de NB à partir des cellules progénitrices de la crête neurale. Le gène ALK semble donc jouer un rôle important dans l'oncogénèse du NB, aussi bien par la présence de mutations activatrices que par sa fréquente surexpression.
Resumo:
Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.
Resumo:
BACKGROUND ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. RESULTS Our results show that both Delta9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. CONCLUSIONS Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.
Resumo:
BACKGROUND Hirschsprung disease (HSCR) is a congenital malformation of the hindgut produced by a disruption in neural crest cell migration during embryonic development. HSCR has a complex genetic etiology and mutations in several genes, mainly the RET proto-oncogene, have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. METHODS In this study we have aimed to analyze the presence of CNVs in some HSCR genes (RET, EDN3, GDNF and ZFHX1B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. RESULTS Two alterations in the MLPA profiles of RET and EDN3 were detected, but a detailed inspection showed that the decrease in the corresponding dosages were due to point mutations affecting the hybridization probes regions. CONCLUSION Our results indicate that CNVs of the gene coding regions analyzed here are not a common molecular cause of Hirschsprung disease. However, further studies are required to determine the presence of CNVs affecting non-coding regulatory regions, as well as other candidate genes.
Resumo:
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Resumo:
Background: Activating mutations of the anaplastic lymphoma receptor tyrosine kinase gene (ALK) were identified in both somatic and familial neuroblastoma. The most common somatic mutation, F1174L, is associated with NMYC amplification and displayed an efficient transforming activity in vivo. In addition, both AKL-F1174L and NMYC were shown cooperate in neuroblastoma tumorigenesis in animal models. To analyse the role of ALK mutations in the oncogenesis of neuroblastoma, ALK wt and various ALK mutants were transduced in murine neural crest stem cells (MONC1). Methods: ALK-wt, and F1174L, and R1275Q mutants were stably expressed by retroviral infection using the pMIGR1 vector in the murine neural crest stem cell line MONC-1, previously immortalised with v-myc, and further implanted subcutaneously or orthotopically in nude mice. Results: Both MONC1-ALK-F1174L and -R1275Q cells displayed a rapid tumour forming capacity upon subcutaneous injection in nude mice compared to control MONC1-MIGR or MONC1 cells. Interestingly, the transforming capacity of the F1174L mutant was much more potent compared to that of R1275Q mutant in murine neural crest stem cells, while ALK-wt was not tumorigenic. In addition, mice implanted orthotopically in the left adrenal gland with MONC1-ALK-F1174L cells developed highly aggressive tumours in 100% of mice within three weeks, while MONC1-Migr or MONC1 derived tumours displayed a longer latency and a reduced tumour take. Conclusions: The activating ALK-F1174L mutant is highly tumorigenic in neural crest stem cells. Nevertheless, we cannot exclude a functional implication of the v-myc oncogene used for MONC1 cells immortalisation. Indeed, the control MONC1-Migr and MONC1 cells were also able to derive subcutaneous and orthotopic tumours, although with considerable reduced efficiency. Further investigations using neural crest stem cell lacking exogenous myc expression are currently on way to assess the exclusive role of ALK mutations in NB oncogenesis.