973 resultados para Tumour-infiltrating Lymphocyte
Resumo:
Transforming growth factor beta 1 (TGF beta 1)-null mice die fro complications due to an early-onset multifocal inflammatory disorder. We show here that cardiac cells are hyperproliferative and that intercellular adhesion molecule 1 (ICAM-1) is elevated. To determine which phenotypes are primarily caused by a deficiency in TGF beta 1 from those that are secondary to inflammation, we applied immunosuppressive therapy and genetic combination with the severe combined immunodeficiency (SCID) mutation to inhibit the inflammatory response. Treatment with antibodies to the leukocyte function-associated antigen 1 doubled longevity, reduced inflammation, and delayed heart cell proliferation. TGF beta 1-null SCID mice displayed no inflammation or cardiac cell proliferation, survived to adulthood, and exhibited normal major histocompatibility complex II (MHC II) and ICAM-1 levels. TGF beta 1-null pups born to a TGF beta 1-null SCID mother presented no gross congenital heart defects, indicating that TGF beta 1 alone does not play an essential role in heart development. These results indicate that lymphocytes are essential for the inflammatory response, cardiac cell proliferation, and elevated MHC II and ICAM-1 expression, revealing a vital role for TGF beta 1 in regulating lymphocyte proliferation and activation, which contribute to the maintenance of self tolerance.
Resumo:
Using transgenic mice that replicate the hepatitis B virus (HBV) genome, we recently demonstrated that class I-restricted, hepatitis B surface antigen-specific cytotoxic T lymphocytes (CTLs) can noncytolytically eliminate HBV pregenomic and envelope RNA transcripts from the hepatocyte. We now demonstrate that the steady-state content of these viral transcripts is profoundly reduced in the nucleus and cytoplasm of CTL-activated hepatocytes, but their transcription rates are only slightly reduced. Additionally, we demonstrate that transcripts covering the HBV X coding region are resistant to downregulation by the CTL. These results imply the existence of CTL-inducible hepatocellular factors that interact with a discrete element(s) between nucleotides 3157 and 1239 within the viral pregenomic and envelope transcripts and mediate their degradation, thus converting the hepatocyte from a passive victim to an active participant in the host response to HBV infection.
Resumo:
The phenotypes of CD19-deficient (CD19-/-) mice, and human CD19-transgenic (hCD19TG) mice that overexpress CD19 indicate that CD19 is a response regulator of B-lymphocyte surface receptor signaling. To further characterize the function of CD19 during B-cell differentiation, humoral immune responses to a T-cell-independent type 1 [trinitrophenyl-lipopolysaccharide (TNP-LPS)], a T-cell-independent type 2 [dinitrophenyl (DNP)-Ficoll], and a T-cell-dependent [DNP-keyhole limpet hemocyanin (KLH)] antigen were assessed in CD19-/- and hCD19TG mice. B cells from CD19-/- mice differentiated and underwent immunoglobulin isotype switching in vitro in response to mitogens and cytokines. In vivo, CD19-/- mice generated humoral responses to TNP-LPS and DNP-KLH that were dramatically lower than those of wild-type littermates. Surprisingly, the humoral response to DNP-Ficoll was significantly greater in CD19-/- mice. In contrast, hCD19TG mice were hyperresponsive to TNP-LPS and DNP-KLH immunization but were hyporesponsive to DNP-Ficoll. These results demonstrate that CD19 is not required for B-cell differentiation and isotype switching but serves as a response regulator which modulates B-cell differentiation. Since humoral responses to both T-cell-dependent and T-cell-independent antigens were similarly affected by alterations in CD19 expression, these differences are most likely to result from intrinsic changes in B-cell function rather than from the selective disruption of B-cell interactions with T cells.
Resumo:
Recruitment of antigen-specific tumor-infiltrating lymphocytes (TILs) is a major goal for immunotherapy of malignant tumours. We now describe that T-cell-activating superantigens targeted to a tumor by monoclonal antibodies induced large numbers of pseudospecific TILs and eradication of micrometastases. As a model for tumor micrometastases, syngeneic B16 melanoma cells transfected with the human colon carcinoma antigen C215 were injected intravenously into C57BL/6 mice and therapy with an anti-C215 Fab fragment-staphylococcal enterotoxin A (C215Fab-SEA) fusion protein reacting with the C215 antigen was initiated when visible lung metastases were established. More than 90% reduction of the number of lung metastases was observed when mice carrying 5-day-old established lung metastases were treated with C215Fab-SEA. The antitumor effect of C215Fab-SEA was shown to be T-cell-dependent since no therapeutic effect was seen in T-cell-deficient nude mice. Depletion of T-cell subsets by injection of monoclonal antibody demonstrated that CD8+ cells were the most prominent effector cells although some contribution from CD4+ cells was also noted. C215Fab-SEA treatment induced massive tumor infiltration of CD4+ and CD8+ T cells, while only scattered T cells were observed in untreated tumors. SEA treatment alone induced a slight general inflammatory response in the lung parenchyme, but no specific accumulation of T cells was seen in the tumor. TILs induced by C215Fab-SEA were mainly CD8+ but a substantial number of CD4+ cells were also present. Immunohistochemical analysis showed strong production of the tumoricidal cytokines tumor necrosis factor alpha and interferon gamma in the tumor. Thus, the C215Fab-SEA fusion protein targets effector T lymphocytes to established tumors in vivo and provokes a strong local antitumor immune response.
Resumo:
CD28 is a costimulatory receptor found on the surface of most T lymphocytes. Engagement of CD28 induces interleukin 2 (IL-2) production and cell proliferation when combined with an additional signal such as treatment with phorbol ester, an activator of protein kinase C. Recent studies have established that after CD28 ligation, the cytoplasmic domain of CD28 can bind to the 85-kDa subunit of phosphatidylinositol 3-kinase (PI3 kinase). There is a concomitant increase in PI3 lipid kinase activity that may be important in CD28 signaling. Despite the requirement of phorbol 12-myristate 13-acetate (PMA) for effector function, we have found, however, that treatment of Jurkat T cells with the phorbol ester PMA dramatically inhibits (i) the association of PI3 kinase with CD28, (ii) the ability of p85 PI3 kinase to be immunoprecipitated by anti-phosphotyrosine antibodies, and (iii) the induction of PI3 kinase activity after stimulation of the cells with the anti-CD28 monoclonal antibody 9.3. These changes occur within minutes of PMA treatment and are persistent. In addition, we have found that wortmannin, a potent inhibitor of PI3 kinase, does not interfere with the induction of IL-2 after stimulation of Jurkat T cells with anti-CD28 monoclonal antibody and PMA. We conclude that PI3 kinase activity may not be required for CD28-dependent IL-2 production from Jurkat T cells in the presence of PMA.
Resumo:
We studied blood lymphocytes of human immunodeficiency virus (HIV)-seropositive and -negative homosexual men for the presence of T(8;14) translocations that recombine c-myc and immunoglobulin heavy-chain (IgH) mu/IgH alpha switch regions. Clones with T(8;14) translocations were detected in 10.5% (12/114) of the HIV-positive and in 2.0% of the 99 uninfected patients. The majority of recombinations were found at a single time point only. Four patients, however, harbored multiple (up to four) and persistent (up to 9 years) translocation-positive cell clones. No correlation between the presence of these aberrant lymphocytes and a later lymphoma could be established. The exon 1/intron 1 region of the recombined c-myc was investigated for the presence of point mutations and these were found in the nonpersistent clones. Additional alterations detected in these clones included duplications and a deletion in the c-myc gene. The pattern of base substitution indicates that they were introduced after the translocation event.
Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division.
Resumo:
Growth factors have been defined by their ability to promote the proliferative expansion of receptor-bearing cells. For example, antigen-activated T cells expressing the alpha beta gamma form of the interleukin 2 (IL-2) receptor will proliferate in response to IL-2. In contrast, resting T cells, which express the IL-2 receptor beta and gamma chains, do not proliferate in response to IL-2. We demonstrate that the survival of resting T cells following gamma irradiation is greatly enhanced by pretreatment with IL-2. The radioprotective effect of IL-2 is dose dependent, does not result from the induction of cell proliferation, and does not require expression of the IL-2 receptor alpha chain. Thus, the beta gamma IL-2 receptor expressed on resting T cells can transduce signals that promote cell survival without committing the T cell to undergo cell division. IL-4 and IL-7, but not IL-1, IL-3, or IL-6, were also found to enhance the survival of quiescent T cells following gamma irradiation. Thus, certain growth factor-receptor interactions can serve to maintain cell viability in a manner that is independent of their ability to initiate or maintain cell proliferation. These data may have important implications for the use of growth factors in patients being treated with radiation and/or chemotherapy.
Resumo:
To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.
Resumo:
Cytokines are important regulators of hematopoesis. Mutations in gamma c, which is a subunit shared by the receptors for interleukin (IL) 2, IL-4, and IL-7, have been causally associated with human X chromosome-linked severe combined immunodeficiency disease. This finding indicates a mandatory role for cytokine receptor signaling at one or more stages of lymphocyte development. To evaluate the cellular level at which gamma c is critical for lymphopoiesis, the effect of monoclonal antibodies to gamma c on the capacity of syngeneic bone marrow cells to reconstitute the hematopoietic compartment of lethally irradiated recipient mice was examined. We show that monoclonal antibody to gamma c blocked lymphocyte development at or before the appearance of pro-B cells and prior to or at the seeding of the thymus by precursor cells while erythromyeloid cell development was normal. These results suggest that one level of lymphocyte development that requires gamma c is a point in hematopoietic cell differentiation near the divergence of lymphopoiesis and erythromyelopoesis.
Resumo:
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The speech characteristics, oromotor function and speech intelligibility of a group of children treated for cerebellar tumour (CT) was investigated perceptually. Assessment of these areas was performed on 11 children treated for CT with dysarthric speech as well as 21 non-neurologically impaired controls matched for age and sex to obtain a comprehensive perceptual profile of their speech and oromotor mechanism. Contributing to the perception of dysarthria were a number of deviant speech dimensions including imprecision of consonants, hoarseness and decreased pitch variation, as well as a reduction in overall speech intelligibility for both sentences and connected speech. Oromotor assessment revealed deficits in lip, tongue and laryngeal function, particularly relating to deficits in timing and coordination of movements. The most salient features of the dysarthria seen in children treated for CT were the mild nature of the speech disorder and clustering of speech deficits in the prosodic, phonatory and articulatory aspects of speech production.
Resumo:
Background: Tumour metastasis remains the principal cause of treatment failure and poor prognosis in patients with cancer. Recent advances in our understanding of the biology of metastasis are providing novel potential targets for anti-cancer therapies. Aim: This paper reviews the current concepts in tumour metastasis. Methods: A review of Medline publications relating to the molecular biology and therapy of human tumour metastasis was conducted. Results and Discussion: Early metastasis models were based upon the premise of uninterrupted tumour growth, with the inevitable formation of distant metastases and eventual death of the patient. However, current research suggests that metastasis is an inefficient process governed by several rate-limiting steps, and that failure to negotiate these steps can lead to tumour dormancy. Successful metastatic tumour growth depends upon appropriate tumour-host microenvironment interactions and, ultimately, the development of vascularised metastases post-extravasation in the target organ. An understanding of the molecular mechanisms involved in this dynamic process will aid in the identification of therapeutic targets that may allow earlier diagnosis and more specific therapies for patients with metastasis.