971 resultados para Tumor Markers, Biological -- analysis
Resumo:
In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial-mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance.
Resumo:
We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85% identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Northern blot analysis detected TNFSF10-specific transcripts (approximately 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34-->q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel.
Resumo:
Expression of the hyaluronan-mediated motility receptor (RHAMM, CD168) predicts adverse clinicopathological features and decreased survival for colorectal cancer (CRC) patients. Using full tissue sections, we investigated the expression of RHAMM in tumor budding cells of 103 primary CRCs to characterize the biological processes driving single-cell invasion and early metastatic dissemination. RHAMM expression in tumor buds was analyzed with clinicopathological data, molecular features and survival. Tumor budding cells at the invasive front of CRC expressed RHAMM in 68% of cases. Detection of RHAMM-positive tumor budding cells was significantly associated with poor survival outcome (P = .0312), independent of TNM stage and adjuvant therapy in multivariate analysis (P = .0201). RHAMM-positive tumor buds were associated with frequent lymphatic invasion (P = .0007), higher tumor grade (P = .0296), and nodal metastasis (P = .0364). Importantly, the prognostic impact of RHAMM expression in tumor buds was maintained independently of the number of tumor buds found in an individual case (P = .0246). No impact of KRAS/BRAF mutation, mismatch repair deficiency and CpG island methylation was observed. RHAMM expression identifies an aggressive subpopulation of tumor budding cells and is an independent adverse prognostic factor for CRC patients. These data support ongoing efforts to develop RHAMM as a target for precision therapy.
Resumo:
Arachidonic acid (5Z,8Z,11Z,14Z-eicosatetraenoic acid; C20:4) (arachidonate, AA) is a vital polyunsaturated omega-6 fatty acid (PUFA) without its presence the mammalian brain, muscles, and possibly other organs cannot develop or function [1] and [2]. AA fulfils numerous known and possibly yet unknown functions as integral part of mammalian phospholipid membranes and as free AA which also acts as a precursor of a variety of biologically active lipid mediators generally referred to as eicosanoids (e.g., prostaglandins, leukotrienes). A more recent class of eicosanoids is composed of the endogenous cannabinoids (endocannabinoids) 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide (anandamide, AEA), which act on cannabinoid CB1 and CB2 receptors but also modulate ion channels and nuclear receptors [3] and [4]. In recent years, the role of endocannabinoids as prominent anti-inflammatory and neuromodulatory eicosanoids has been shown by numerous studies [5].
Resumo:
BACKGROUND Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMECUS) or Swiss Holstein-Friesian (bMECCH) cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40) large T-antigen (MAC-T) for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK) 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA). RESULTS The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin), myoepithelial (α-SMA) and glandular secretory cells (CKs) showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05) in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry) of CK7 and CK19 protein was lower (P < 0.05) in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T). The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable degree epithelial and mesenchymal features. Thus, based on their characterization with widely used cell markers, none of these cultures represent an unequivocal alveolar mammary epithelial cell model. For choosing the appropriate in vitro model additional properties such as the expression profile of specific proteins of interest (e.g., transporter proteins) should equally be taken into account.
Resumo:
OBJECTIVE To assess whether palliative primary tumor resection in colorectal cancer patients with incurable stage IV disease is associated with improved survival. BACKGROUND There is a heated debate regarding whether or not an asymptomatic primary tumor should be removed in patients with incurable stage IV colorectal disease. METHODS Stage IV colorectal cancer patients were identified in the Surveillance, Epidemiology, and End Results database between 1998 and 2009. Patients undergoing surgery to metastatic sites were excluded. Overall survival and cancer-specific survival were compared between patients with and without palliative primary tumor resection using risk-adjusted Cox proportional hazard regression models and stratified propensity score methods. RESULTS Overall, 37,793 stage IV colorectal cancer patients were identified. Of those, 23,004 (60.9%) underwent palliative primary tumor resection. The rate of patients undergoing palliative primary cancer resection decreased from 68.4% in 1998 to 50.7% in 2009 (P < 0.001). In Cox regression analysis after propensity score matching primary cancer resection was associated with a significantly improved overall survival [hazard ratio (HR) of death = 0.40, 95% confidence interval (CI) = 0.39-0.42, P < 0.001] and cancer-specific survival (HR of death = 0.39, 95% CI = 0.38-0.40, P < 0.001). The benefit of palliative primary cancer resection persisted during the time period 1998 to 2009 with HRs equal to or less than 0.47 for both overall and cancer-specific survival. CONCLUSIONS On the basis of this population-based cohort of stage IV colorectal cancer patients, palliative primary tumor resection was associated with improved overall and cancer-specific survival. Therefore, the dogma that an asymptomatic primary tumor never should be resected in patients with unresectable colorectal cancer metastases must be questioned.
Resumo:
Four 8-azaguanine (AG)-resistant and 5-bromodeoxyuridine (BUdR)-resistant clones of a mouse mammary adenocarcinoma cell line, RIII 7387, were developed and analyzed for their tumorigenic properties, in vitro characteristics, and virus expression. These characteristics were analyzed for relationships of any of the cellular parameters and the ability of these lines to produce tumors in syngeneic animals.^ The results of this study demonstrated that the parental line consists of a heterogeneous population of cells. Doubling times, saturation densities, and 2-deoxy-D-glucose uptake varied between sublines. In addition, while all sublines were found to express both B-type and C-type viral antigenic markers, levels of the major B-type and C-type viral proteins varied in the subclones. The sublines also differed markedly in their response to the presence of dexamethasone, glutathione, and insulin in the tissue culture medium.^ Variations in retrovirus expression were convirmed by electron microscopy. Budding and extracellular virus particles were seen in the majority of the cell lines. Virus particles in one of the BUdR-resistant lines, BUD9, were found however, only in inclusions and vacuoles. The AG-resistant subline AGE11 was observed to be rich in intracytoplasmic A particles. The examination of these cell lines for the presence of retroviral RNA-dependent DNA polymerase (RT) activity revealed that some B-type RT activity could be found in the culture fluid of most of the cell lines but that little C-type RT activity could be found suggesting that the C-type virus particles expressed by these RIII clones contain a defective RT.^ Tumor clones also varied in their ability to form tumors in syngeneic RIII mice. Tumor incidence ranged from 50% to 100%. The majority of the tumors regressed within 30 days post infection.^ Statistical analysis indicated that while these clones varied in their characteristics, there was no correlation between the ability of these cell lines to form tumors in syngeneic mice and any of the other characteristics examined.^ These studies have confirmed and extended the growing evidence that tumors, regardless of their natural origin, consist of heterogeneous subpopulations of cells which may vary widely in their in vitro growth behavior, their antigenic expression, and their malignant properties. ^
Resumo:
The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^
Resumo:
Tumor-specific transplantation antigens (TSTA) are individually distinct neoantigens expressed on the cells of chemically-induced neoplasms. TSTA are operationally defined by immunization of syngeneic mice against challenge with viable tumor cells. Immunization with cell surface or extracted TSTA induces specific resistance to transplanted tumor cells. The biological and biochemical nature of TSTA was investigated in the 3-methylcholanthrene-induced fibrosarcomas of female C3H/HeJ mice, MCA-F and MCA-D. Tumor cell suspensions were extracted by treatment with 3M KCl or 2.5% butanol solutions and the TSTA was partially purified by preparative isoelectric focusing. The isoelectric pH of TSTA purified from 3M KCl extracts was 5.8-6.0, and from butanol extracts was 6.4-6.6. Whereas immunization with 10('5) and 10('6) irradiated tumor cells induces complete rejection of tumor cell challenge over a two-fold-log dose range, immunization with ug quantities within a one-fold-log dose range of extracted TSTA induces only partial resistance to tumor challenge. Reduced immunogenicity of extracted TSTA is hypothesized to result from immunization of mice with insufficiently purified TSTA preparations. The hypothesis predicts that immunization with highly purified TSTA, free from interfering substances, induces complete rejection of tumor challenge over a broad dose range. To test the hypothesis preparative isotachophoresis (pITP) was used to purify TSTA from electrofocused TSTA fractions. Significant purification was achieved, as immunization with 15 pg to 1.5 ug (5 logs) of pITP-purified TSTA extracted from the MCA-F, or with 1 pg to 10 ng (4 logs) of TSTA from the MCA-D tumor induced specific resistance to tumor challenge. Despite 50,000 fold purification of TSTA, immunization induced partial, not complete, rejection of transplanted tumor cells. This suggests a clear dissociation of the immunogenicity and purification of extracted TSTA, indicating that the induction of partial immunity to tumor challenge is an intrinsic property of extracted TSTA.^
Resumo:
Frequent loss of heterozygosity (LOH) at specific chromosomal regions are highly associated with the inactivation of tumor suppressor genes (TSGs) (Weinberg, 1991; Bishop, 1989). Chromosome 8p is the most frequently reported site of LOH (∼60%) in prostate cancer (PC), suggesting that there may be inactivated TSG(s) involved in PC on chromosome 8p. (Bergerheim et. al., 1991; Kagan et. al., 1995). In order to identify the smallest common regions of frequent LOH (SCLs) on chromosome 8, we screened 52 PC patient/tumor samples with 39 polymorphic markers in successive screenings. In the course of refining the SCLs, we identified 3 tumors with >6 Mb homozygous deletions (HZDs) at 8p22 and 8p21, suggesting the presence of candidate TSGs at both loci. These HZDs spanned the two SCLs at 8p22 (46%) and 8p21 (45%). The SCLs were narrowed to 3.2 cM at 8p22 and less than 3 cM at 8p21. ^ In order to identify candidate TSGs within the SCLs on 8p, two approaches were used. In the candidate gene approach, thirty genes that mapped to the SCLs were evaluated for expression in normal prostate and in PC cell lines. One of the candidate genes, Clusterin, showed decreased expression in 4/7 (57%) prostate cancer cell lines by Northern blot analysis. Clusterin will be further examined as a candidate TSG. ^ The second approach involved utilizing subtractive hybridization and hybrid affinity capture to generate pools of expressed sequence tags (ESTs) enriched for genes that are downregulated or deleted in PC and that map to specific regions of interest. We took advantage of a prostate cancer cell line (PC3) with a known HZD of a candidate TSG, CTNNA1 on 5q31, to develop and validate a model system. We then developed subtracted libraries enriched for 8p22 and 8p21 ESTs by this method, using two cell lines, MDAPCa-2b and PC3. The ESTs were cloned, and 40 were sequenced and evaluated for expression in normal prostate and PC cell lines. Three ESTs from the subtracted libraries, C2, C17 and F12, showed decreased expression in 29–57% of the prostate tumor cell lines studied, and will be further examined as candidate TSGs. ^
High-resolution microarray analysis of chromosome 20q in human colon cancer metastasis model systems
Resumo:
Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^
Resumo:
Alternate splicing of the cyclin D1 gene gives rise to transcript a and b which encode two protein isoforms cyclin D1a and cyclin D1b. Through testing transcript a and transcript b in a series of human samples, we found that cyclin D1 transcript b is ubiquitously expressed as transcript a but in the lower abundance compared to transcript a. Epidemiological studies have reported that the cyclin D1 gene (CCND1) G870A polymorphism influences the risk for a variety of cancer. In this investigation, we examined the cyclin D1b levels in tumor samples with different genotypes and found that higher levels of cyclin D1b are expressed from the A allele than the G allele. Cyclin D1 is known as a cell cycle regulator facilitating the progression of the cell cycle from G1 to S phase in response to the mitogenic signals. It also interacts with several transcription factors and transcriptional coregulators to modulate their activities. It has been reported that cyclin D1a can substitute for estrogen to activate estrogen receptor α (ERα) mediated transcription and can induce the proliferation of estrogen responsive tissues. However the biological role of cyclin D1b in ERα transcriptional regulation has not been previously explored. In this study, we determined that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription. Cell proliferation assays provided the evidence that cyclin D1b negatively regulates estrogen responsive breast cancer cell growth. Taken together, our findings show that the CCND1 G870A polymorphism is correlated with increased levels of cyclin D1b and that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription providing evidence for the mechanism by which the CCND1 G870A polymorphism may be protective in certain types of breast cancer. ^
Resumo:
The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^
Resumo:
This dissertation develops and tests through path analysis a theoretical model to explain how socioeconomic, socioenvironmental, and biologic risk factors simultaneously influence each other to further produce short-term, depressed growth in preschoolers. Three areas of risk factors were identified: child's proximal environment, maturational stage, and biological vulnerability. The theoretical model represented both the conceptual framework and the nature and direction of the hypotheses. Original research completed in 1978-80 and in 1982 provided the background data. It was analyzed first by nested-analysis of variance, followed by path analysis. The study provided evidence of mild iron deficiency and gastrointestinal symptomatology in the etiology of depressed, short-term weight gain. Also, there was evidence suggesting that family resources for material and social survival significantly contribute to the variability of short-term, age-adjusted growth velocity. These results challenge current views of unifocal intervention, whether for prevention or control. For policy formulations, though, the mechanisms underlying any set of interlaced relationships must be decoded. Theoretical formulations here proposed should be reassessed under a more extensive research design. It is suggested that studies should be undertaken where social changes are actually in progress; otherwise, nutritional epidemiology in developing countries operates somewhere between social reality and research concepts, with little grasp of its real potential. The study stresses that there is a connection between substantive theory, empirical observation, and policy issues. ^
Resumo:
Background: Activation of the sympathetic nervous system (SNS) in response to chronic biobehavioral stress results in high levels of catecholamines and persistent activation of adrenergic signaling, which promotes tumor growth and progression. However it is unknown how catecholamine levels within the tumor exceed systemic levels in circulation. I hypothesized that neo-innervation of tumors is required for stress-mediated effects on tumor growth. Results: First, I examined whether sympathetic nerves are present in human ovarian cancer samples as well as orthotopic ovarian cancer models. Immunohistochemical (IHC) staining for neurofilament revealed that catecholaminergic neurons are present within tumor tissue. In order to determine whether chronic stress affects the density of nerves in the tumor, I utilized an orthotopic mouse model of ovarian cancer that was exposed to daily restraint stress. IHC analysis revealed that nerve density in tumors increased by more than three-fold in stressed animals versus non-stressed controls. IHC analysis suggested that this results from both recruitment of existing neurons (axonogenesis) as well as new neuron formation (neurogenesis) within the tumor. To determine how tumors are recruiting nerve growth, I utilized a PCR array analysis of 84 nerve growth related genes and their receptors, which showed that stimulation of the SKOV3 ovarian cancer cell line with norepinephrine (NE) leads to increased expression of several neurotrophins, including brain-derived neurotrophic factor (BDNF). Neurite extension assays showed that media conditioned by ovarian cancer cell lines is capable of inducing neurite outgrowth in differentiated neuron-like PC12 cells, and NE treatment of cancer cells potentiates this effect. Norepinephrine-induced neurite extension was abolished after BDNF silencing by siRNA, suggesting that BDNF is critical to tumor cell-induced nerve growth. in vivo BDNF inhibition resulted in complete abrogation of stress-induced increases in tumor weight and nerve density, as well as downstream markers of stress. Discussion: These studies indicate that adrenergic signalling induced by chronic stress promotes neo-innervation in the tumor microenvironment. This results in a mutually beneficial relationship between the tumor cells and neurons. This work is crucial for providing a link between chronic stress and its effects on the tumor and its microenvironment. The data shown here aims to open new venues that can be used in development of therapies designed to block the stress effects on tumor growth.