876 resultados para Trifluoroacetic acids
Resumo:
Free phenolic acids were extracted from a laboratory-produced sample of green malt. Aliquots of the phenolic acid extract were heated from 25 to 110°C over 27 h, representative of a commercial kilning regime. Samples were taken at regular intervals throughout heating and were assessed for changes in antioxidant activity by both the 2,2(prime)-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation scavenging (ABTS(^•+)) and the ferric-reducing antioxidant potential (FRAP) assays. Changes in the profile of the phenolic acids of the extracts were determined by HPLC. Overall, there was a decrease in both antioxidant activity level and the level of phenolic acids, but as the temperature increased from 80 to 100°C, there was an increase in both the antioxidant activity level and the level of detected phenolic acids.
Resumo:
An unusual Gram-positive, facultatively anaerobic, catalase-positive, diphtheroid-shaped organism originating from an unknown human clinical source was characterized by biochemical, molecular chemical and molecular phylogenetic methods. Based on its morphological and biochemical characteristics and the presence of a murein based on meso-diaminopimelic acid, the unidentified organism was tentatively assigned to the genus Corynebacterium. However, the unknown organism was found to lack the distinctive, short-chain corynomycolic acids that are considered to be characteristic of this genus. Despite the absence of these characteristic lipids, comparative 16S rRNA gene sequencing showed that the unknown bacterium was phylogenetically a member of the genus Corynebacterium and was distinct from all currently known species. Based on both phenotypic and 16S rRNA sequence considerations, it is proposed that the unknown organism be classified as a novel species, Corynebacterium atypicum sp. nov. The type strain of C. atypicum is strain R2070(T) (= CCUG 45804(T) = CIP 107431(T)).
Resumo:
Oral supplements of arginine and citrulline increase local nitric oxide (NO production in the small intestine and this may be harmful under certain circumstances. Gastrointestinal toxicity was therefore reviewed with respect to the intestinal physiology of arginine, citrulline, ornithine, and cystine (which shares the same transporter) and the many clinical trials of supplements of the dibasic amino acids or N-acetylcysteine (NAC. The human intestinal dibasic amino acid transport system has high affinity and low capacity. L-Arginine (but not lysine, ornithine, or D-arginine) induces water and electrolyte secretion that is mediated by NO, which acts as an absorbagogue at low levels and as a secretagogue at high levels. The action of many laxatives is NO mediated and there are reports of diarrhea following oral administration of arginine or ornithine ihine. The clinical data cover a wide span of arginine intakes f rom 3 g/d to > 100 g/d, but the standard of reporting adverse effects (e.g. nausea, vomiting, and diarrhea) was variable. Single doses of 3-6 g rarely provoked side effects and healthy athletes appeared to be more susceptible than diabetic patients to gastrointestinal symptoms at individual doses >9 g. This may relate to an effect of disease on gastrointestinal motility and pharmacokinetics. Most side effects of arginine and NAC occurred at single doses of >9 g in adults >140 mg/kg) often when part of a daily regime of similar to>30 g/d (>174 mmol/d). In the case of arginine, this compares with the laxative threshold of the nonabsorbed disaccharide alcohol, lactitol (74 g or 194 mmol). Adverse effects seemed dependent on the dosage regime and disappeared if divided doses were ingested (unlike lactitol). Large single doses of poorly absorbed amino acids seem to provoke diarrhea. More research is needed to refine dosage strategies that reduce this phenomenon. It is suggested that dipeptide forms of arginine may meet this criterion.
Resumo:
Background: Dietary a-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. Objective: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. Design: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. Results: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/-SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma a-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. Conclusion: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.
Resumo:
Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHID). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.
Resumo:
Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.
Resumo:
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.
Resumo:
We have investigated the contribution of muscle components to the development of cooked meat odour in an aqueous model system using trained taste panels. Reaction mixtures were prepared with oleic, linoleic and linolenic acids with or without cysteine and ribose in a buffer with or without ferrous sulphate. Odour profiles were assessed and triangular tests were used to determine the ability of panellists to discriminate between mixtures. The presence of sugar and amino acid was highly detectable by panellists independently of the fatty acid considered (P < 0.001). However, the presence of C18:3 made differences. more obvious between mixtures than the presence of C18:1 or C18:2. `Meaty' notes were only associated with cysteine and ribose. `Fishy' notes were only apparent in C18:3 mixtures with or without sugar and amino acid, although the presence of cysteine and ribose decreased the perception. The addition of Fe+ +, a pro-oxidant present in the muscle, produced a reduction in the score of the attributes although the pattern was the same as when Fe was not used in the mixtures. Only `fishy' notes that were exclusively perceived in C18:3 mixtures showed a higher score in the presence of iron. Iron also produced a better discrimination in C18:3 mixtures, which were closely related to `grassy' notes in the presence of cysteine and ribose. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Current intakes of very long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids also. Very long-chain omega-3 fatty acids are readily incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage (adipose) pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, lipid-mediator generation, cell signaling, and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology and the way cells and tissues respond to external signals. In most cases the effects seen are compatible with improvements in disease biomarker profiles or health-related outcomes. As a result, very long-chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long-chain omega-3 fatty acids not only protect against cardiovascular morbidity but also against mortality. In some conditions, for example rheumatoid arthritis, they may be beneficial as therapeutic agents. On the basis of the recognized health improvements brought about by long-chain omega-3 fatty acids, recommendations have been made to increase their intake. The plant omega-3 fatty acid, alpha-linolenic acid (ALA), can be converted to EPA, but conversion to DHA appears to be poor in humans. Effects of ALA on human health-related outcomes appear to be due to conversion to EPA, and since this is limited, moderately increased consumption of ALA may be of little benefit in improving health outcomes compared with increased intake of preformed EPA + DHA.
Resumo:
Current intakes of very long chain omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DNA) are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids too. Very long chain w-3 fatty acids are readily incorporated from capsules into transport, functional, and storage pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, eicosanoid generation, cell signaling and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology, and the way cells and tissues respond to external signals. In most cases, the effects seen are compatible with improvements in disease biomarker profiles or in health-related outcomes. As a result, very long chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long chain omega-3 fatty acids protect against cardiovascular morbidity and mortality, and might be beneficial in rheumatoid arthritis, inflammatory bowel diseases, childhood learning, and behavior, and adult psychiatric and neurodegenerative illnesses. DHA has an important structural role in the eye and brain, and its supply early in life is known to be of vital importance. On the basis of the recognized health improvements brought about by long chain omega-3 fatty acids, recommendations have been made to increase their intake. (C) 2009 International Union of Biochemistry and Molecular Biology, Inc. Volume 35, Number 3, May/June 2009, Pages 266-272. E-mail: pcc@soton.ac.uk
Resumo:
The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P=0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P=0.035), TAG (98 %; P=0.001) and PBMC (84 %; P=0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.
Resumo:
The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.
Resumo:
Background: Indian Asians in Western countries have a higher rate of coronary artery disease than do the indigenous white populations, and this higher rate may be influenced by a dietary imbalance of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Objective: The objective of the study was to test the hypothesis that a high background dietary intake of n-6 PUFA attenuates the effects of fish-oil supplementation on insulin sensitivity and associated blood lipids of the metabolic syndrome. Design: Twenty-nine Indian Asian men were recruited to participate in a 12-wk dietary intervention trial. Volunteers were randomly assigned to receive either a moderate or a high n-6 PUFA diet featuring modified oils and spreads over a 6-wk period. After this 6-wk period, both groups were supplemented with 4.0 g fish oil/d (2.5 g eicosapentaenoic acid + docosahexaenoic acid) for an additional 6 wk in combination with the dietary treatment. Volunteers participated in a postprandial study and an insulin sensitivity test after the 6-wk dietary intervention and again after the fish-oil supplementation period. Results: There was no significant time X treatment interaction for blood lipids or insulin action after dietary intervention with the moderate or high n-6 PUFA diets in combination with fish oil. After the 6-wk period of fish oil supplementation, fasting and postprandial plasma triacylglycerol concentrations decreased significantly. Conclusion: The background dietary n-6 PUFA concentration did not modulate the effect of fish-oil supplementation on blood lipids or measures of insulin sensitivity in this ethnic group.
Resumo:
The suitability of the caco-2 cell line as a model for studying the long term impact of dietary fatty acids on intestinal lipid handling and chylomicron production was examined. Chronic supplementation of caco-2 cells with palmitic acid (PA) resulted in a lower triacylglycerol secretion than oleic acid (OA). This was coupled with a detrimental effect of PA, but not OA, on transepithelial electrical resistance (TER) measurements, suggesting a loss of structural integrity across the cell monolayer. Addition of OA reversed the adverse effects of PA and stearic acid on TER and increased the ability of cells to synthesise and accumulate lipid, but did not normalise the secretion of lipids by caco-2 cells. Increasing amounts of OA and decreasing amounts of PA in the incubation media markedly improved the ability of cells to synthesise apolipoprotein B and secrete lipids. Real time RT-PCR revealed a down regulation of genes involved in lipoprotein synthesis following PA than OA. Electron microscopy showed adverse effects of PA on cellular morphology consistent with immature enterocytes such as stunted microvilli and poor tight junction formation. In conclusion, previously reported differences in lipoprotein secretion by caco-2 cells supplemented with saturated fatty acids (SFA) and OA may partly reflect early cytotoxic effects of SFA on cellular integrity and function. (C) 2007 Elsevier B.V. All rights reserved.