996 resultados para Transport Industry
Resumo:
The Iowa livestock industry generates large quantities of manure and other organic residues; composed of feces, urine, bedding material, waste feed, dilution water, and mortalities. Often viewed as a waste material, little has been done to characterize and determine the usefulness of this resource. The Iowa Department of Natural Resources initiated the process to assess in detail the manure resource and the potential utilization of this resource through anaerobic digestion coupled with energy recovery. Many of the pieces required to assess the manure resource already exist, albeit in disparate forms and locations. This study began by interpreting and integrating existing Federal, State, ISU studies, and other sources of livestock numbers, housing, and management information. With these data, models were analyzed to determine energy production and economic feasibility of energy recovery using anaerobic digestion facilities on livestock faxms. Having these data individual facilities and clusters that appear economically feasible can be identified specifically through the use of a GIs system for further investigation. Also livestock facilities and clusters of facilities with high methane recovery potential can be the focus of targeted educational programs through Cooperative Extension network and other outreach networks, providing a more intensive counterpoint to broadly based educational efforts.
Resumo:
Crystallization of anatectic melts in high-temperature metamorphic terrains releases volatile-rich magmas that can be transported into adjacent lithologies. This study addresses the variations in the oxygen, boron and hydrogen isotopic composition of aplite-pegmatite dikes that formed during the crystallization of anatectic melts in regional high-temperature metamorphism on the island of Naxos, Greece, and propagated upward into the overlying sequences of metamorphic schist. The transport distance of these dikes was increased through a significant horizontal component of travel that was imposed by contemporaneous low-angle extensional shearing. Laser fluorination oxygen isotope analyses of quartz, tourmaline, garnet, and biotite mineral separates from the aplite-pegmatite dikes show a progressive rise in delta(18)O values with increasing distance from the core. Oxygen isotope fractionations among quartz, tourmaline, and garnet show temperature variations from > 700degreesC down to similar to400degreesC. This range is considered to reflect isotopic fractionation beginning with crystallization at high temperatures in water-undersaturated conditions and then evolving through lower temperature crystallization and retrograde sub-solidus exchange. Two processes are examined for the cause of the progressive increase in delta(18)O values: (1) heterogeneous delta(18)O sources and (2) fluid-rock exchange between the aplite/pegmatite magmas and their host rock. Although the former process cannot be ruled out, there is as yet no evidence in the exposed sequences on Naxos for the presence of a suitable high delta(18)O magma source. In contrast, a tendency for the delta(18)O of quartz in the aplite/pegmatite dikes to approach that of the quartz in the metamorphic rock suggests that fluid-rock exchange with the host rock may potentially be an important process. Advection of fluid into the magma is examined based on Darcian fluid flow into an initially water-undersaturated buoyantly propagating aplitic dike magma. It is shown that such advective flow could only account for part of the O-18-enrichment, unless it were amplified by repeated injection of magma pulses, fluid recycling, and deformation-assisted post-crystallization exchange. The mechanism is, however, adequate to account for hydrogen isotope equilibration between dike and host rock. In contrast, variations in the delta(11)B values of tourmalines suggest that B-11/B-10 fractionation during crystallization and/or magma degassing was the major control of boron geochemistry rather than fluid-rock interaction and that the boron isotopic system was decoupled from that of oxygen. Copyright (C) 2003 Elsevier Ltd.
Resumo:
The aim of this paper is to analyse the impact of university knowledge and technology transfer activities on academic research output. Specifically, we study whether researchers with collaborative links with the private sector publish less than their peers without such links, once controlling for other sources of heterogeneity. We report findings from a longitudinal dataset on researchers from two engineering departments in the UK between 1985 until 2006. Our results indicate that researchers with industrial links publish significantly more than their peers. Academic productivity, though, is higher for low levels of industry involvement as compared to high levels.
Resumo:
Hyperammonemia can provoke irreversible damage to the developing brain, with the formation of cortical atrophy, ventricular enlargement, demyelination or gray and white matter hypodensities. Among the various pathogenic mechanisms involved, alterations in cerebral energy have been demonstrated. In particular, we could show that ammonia exposure generates a secondary deficiency in creatine in brain cells, by altering the brain expression and activity of the genes allowing creatine synthesis (AGAT and GAMT) and transport (SLC6A8). On the other hand, it is known that creatine administration can exert protective effects in various neurodegenerative processes. We could also show that creatine co-treatment under ammonia exposure can protect developing brain cells from some of the deleterious effects of ammonia, in particular axonal growth impairment. This article focuses on the effects of ammonia exposure on creatine metabolism and transport in developing brain cells, and on the potential neuroprotective properties of creatine in the brain exposed to ammonium.
Resumo:
We analyze the linkage between protectionism and invasive species (IS) hazard in the context of two-way trade and multilateral trade integration, two major features of real-world agricultural trade. Multilateral integration includes the joint reduction of tariffs and trade costs among trading partners. Multilateral trade integration is more likely to increase damages from IS than predicted by unilateral trade opening under the classic Heckscher-Ohlin-Samuelson (HOS) framework because domestic production (the base susceptible to damages) is likely to increase with expanding export markets. A country integrating its trade with a partner characterized by relatively higher tariff and trade costs is also more likely to experience increased IS damages via expanded domestic production for the same reason. We illustrate our analytical results with a stylized model of the world wheat market.
Resumo:
Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.
Resumo:
Michigan State University
Resumo:
Aldosterone increases transepithelial Na+ transport in the urinary bladder of Bufo marinus. The response is characterized by 3 distinct phases: 1) a lag period of about 60 min, ii) an initial phase (early response) of about 2 hr during which Na+ transport increases rapidly and transepithelial electrical resistance falls, and iii) a late phase (late response) of about 4 to 6 hr during which Na+ transport still increases significantly but with very little change in resistance. Triiodothyronine (T3, 6 nM) added either 2 or 18 hr before aldosterone selectively antagonizes the late response. T3 per se (up to 6 nM) has no effect on base-line Na+ transport. The antagonist activity of T3 is only apparent after a latent period of about 6 to 8 hr. It is not rapidly reversible after a 4-hr washout of the hormone. The effects appear to be selective for thyromimetic drugs since reverse T3 (rT3) is inactive and isopropyldiiodothyronine (isoT2) is more active than T3. The relative activity of these analogs corresponds to their relative affinity for T3 nuclear binding sites which we have previously described. Our data suggest that T3 might control the expression of aldosterone by regulating gene expression, e.g. by the induction of specific proteins, which in turn will inhibit the late mineralocorticoid response, without interaction with the early response.
Resumo:
Mineral dust aerosols recently collected at the high-altitude Jungfraujoch research station (46 degrees 33'51 `' N, 7 degrees 59'06 `' E; 3580 m a.s.l.) were compared to mineral dust deposited at the Colle Gnifetti glacier (45 degrees 52'50 `' N, 7 degrees 52'33 `' E; 4455 m a.s.l.) over the last millennium. Radiogenic isotope signatures and backward trajectories analyses indicate that major dust sources are situated in the north-central to north-western part of the Saharan desert. Less radiogenic Sr isotopic compositions of PM10 aerosols and of mineral particles deposited during periods of low dust transfer likely result from the enhancement of the background chemically-weathered Saharan source. Saharan dust mobilization and transport were relatively reduced during the second part of the Little Ice Age (ca. 1690-1870) except within the greatest Saharan dust event deposited around 1770. After ca. 1870, sustained dust deposition suggests that increased mineral dust transport over the Alps during the last century could be due to stronger spring/summer North Atlantic southwesterlies and drier winters in North Africa. On the other hand, increasing carbonaceous particle emissions from fossil fuel combustion combined to a higher lead enrichment factor point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers during the last century.
Resumo:
The biodiesel industry in the United States has realized significant growth over the past decade through large increases in annual production and production capacity and a transition from smaller batch plants to larger-scale continuous producers. The larger, continuous-flow plants provide operating cost advantages over the smaller batch plants through their ability to capture co-products and reuse certain components in the production process. This paper uses a simple capital budgeting model developed by the authors along with production data supplied by industry sources to estimate production costs, return-on-investment levels, and break-even conditions for two common plant sizes (30 and 60 million gallon annual capacities) over a range of biodiesel and feedstock price levels. The analysis shows that the larger plant realizes returns to scale in both labor and capital costs, enabling the larger plant to pay up to $0.015 more per pound for the feedstock to achieve equivalent return levels as the smaller plant under the same conditions. The paper contributes to the growing literature on the biodiesel industry by using the most current conversion rates for the production technology and current price levels to estimate biodiesel production costs and potential plant performance, providing a useful follow-up to previous studies.
Resumo:
Before the Civil War (1936-1939), Spain had seen the emergence offirms of complex organizational forms. However, the conflict andthe postwar years changed this pattern. The argument put forwardin this paper is based on historical experience, the efforts willbe addressed to explain the development of Spanish entrepreneurshipduring the second half of the twentieth century. To illustrate thechange in entrepreneurship and organizational patterns among theSpanish firms during the Francoist regime we will turn to the caseof the motor vehicle industry.
Resumo:
We explain why European trucking carriers are much smaller and rely more heavily on owner-operators(as opposed to employee drivers) than their US counterparts. Our analysis begins by ruling outdifferences in technology as the source of those disparities and confirms that standard hypothesesin organizational economics, which have been shown to explain the choice of organizational form inUS industry, also apply in Europe. We then argue that the preference for subcontracting oververtical integration in Europe is the result of European institutions particularly, labor regulationand tax laws that increase the costs of vertical integration.