780 resultados para Transition to first birth
Resumo:
The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates and at 80 degrees C, the transition to beta-PVDF being monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, with the concomitant increase in the 839 cm(-1) band characteristic of the beta-phase. Poling with negative corona discharge was found to affect the alpha-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.
Resumo:
Electron-spin-resonance and dc conductivity data show a thermal-history-dependent transition at 240 K in pressed pellets of ClO4--doped poly(3-methylthiophene) (P3MT). We discuss the possibility of this transition to be a Peierls transition from a room-temperature-metallic to a charge-density-wave state driven by anions ordering at this temperature. Below 100 K, dc conductivity shows a change from linear to exponential decay. Nonlinear conductivity has also been observed in this system for very low electric fields.
Resumo:
The magnetic circular dichroism (MCD) of F2+ centers in KCl:SH- has been measured in absorption in the 1ssigma(g) --> 2p(y)pi(u) transitions at 493 and 509 nm, with fields up to 5 T and in the temperature range 1.5 K < T < 77 K. Within the limit of detection, no MCD is observed in the near infrared transition 1ssigma(g) --> 2psigma(u) as well as in both emissions 2ppi(u) --> 1ssigma(g) and 2psigma(u) --> 1ssigma(g). The optical detection of EPR in the F2+ ground state presents an isotropic single band with g = 1.965 +/- 0.007. The spin-lattice relaxation measured at H = 0.32 T is typical of a direct process T-1 = 4.3 x 10(-2_ coth (gmu(B)H/2k(B)T). The spectral variation of the MCD is calculated using perturbation theory to first order. The Hamiltonian includes the spin-orbit interaction in the 2ppi(u) excited state and the orbital molecular wave functions are obtained by a linear combination of 1s and 2p atomic orbitals. The calculated MCD is in good agreement with the observed one, for the spin-orbit interaction strength Pound(z) = 3.6 meV.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID which constitutes a system of two interacting quantum degrees of freedom coupled to the environment. The decay probability is obtained in the exponential approximation for the overdamped case. Close to the critical driving force of the system, the decay of the metastable state is determined by a unique instanton solution describing the symmetric decay of the phases in each of the two Josephson juctions. Upon reducing the external driving force a new regime is reached where the instanton splits. The doubling of the decay channels reduces the decreasing of the decay rate in the quantum regime. A current-temperature phase diagram is constructed based on the Landau theory of phase transitions. Depending on the external parameters the system develops either a first- or a second-order transition to the split-instanton regime. © 1994 The American Physical Society.
Resumo:
The phase transition from the non-polar α-phase to the polar β-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of α-PVDF were subjected to stretching under controlled rates and at 80°C, the transition to β-PVDF being monitored by the decrease in the Raman band at 794 cm-1 characteristic of the α-phase, with the concomitant increase in the 839 cm-1 band characteristic of the β-phase. Poling with negative corona discharge was found to affect the a-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.
Resumo:
Paracoccidioides brasiliensis is a dimorphic fungus that causes paracoccidioidomycosis, the most prevalent human deep mycosis in Latin America. The dimorphic transition from mycelium to yeast (M-Y) is triggered by a temperature shift from 25°C to 37°C and is critical for pathogenicity. Intracellular Ca 2+ levels increased in hyphae immediately after temperature-induced dimorphism. The chelation of Ca 2+ with extracellular (EGTA) or intracellular (BAPTA) calcium chelators inhibited temperature-induced dimorphism, whereas the addition of extracellular Ca 2+ accelerated dimorphism. The calcineurin inhibitor cyclosporine A (CsA), but not tacrolimus (FK506), effectively decreased cell growth, halted the M-Y transition that is associated with virulence, and caused aberrant growth morphologies for all forms of P. brasiliensis. The difference between CsA and FK506 was ascribed by the higher levels of cyclophilins contrasted to FKBPs, the intracellular drug targets required for calcineurin suppression. Chronic exposure to CsA abolished intracellular Ca 2+ homeostasis and decreased mRNA transcription of the CCH1 gene for the plasma membrane Ca 2+ channel in yeast-form cells. CsA had no detectable effect on multidrug resistance efflux pumps, while the effect of FK506 on rhodamine excretion was not correlated with the transition to yeast form. In this study, we present evidence that Ca 2+/calmodulin-dependent phosphatase calcineurin controls hyphal and yeast morphology, M-Y dimorphism, growth, and Ca 2+ homeostasis in P. brasiliensis and that CsA is an effective chemical block for thermodimorphism in this organism. The effects of calcineurin inhibitors on P. brasiliensis reinforce the therapeutic potential of these drugs in a combinatory approach with antifungal drugs to treat endemic paracoccidioidomycosis. Copyright © 2008, American Society for Microbiology. All Rights Reserved.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective was to evaluate when the LH reserve was re-established in postpartum Nellore (Bos indicus) cows by evaluating the response of the hypothalamic-pituitary axis responsiveness to exogenous GnRH or estradiol benzoate (EB). Additionally, we tested the influence of dietary supplementation (SUPL) and calf removal (CR) on the duration of postpartum anestrus. Ninety multiparous lactating Nellore cows were randomly assigned to eight groups. The EB and GnRH groups received 1.0 mg EB (N = 7), and 50 μg lecireline (N = 16), respectively. Additional cows were given the same hormones, and subjected to either nutritional supplementation (EB-SUPL, N = 9; GnRH-SUPL, N = 16), or calf removal at 72 hours after calving (EB-CR, N = 4; GnRH-CR, N = 13). The remaining two groups were the LH (12.5 mg, N = 14) and control groups (saline, N = 11). Hormones were administered weekly from 7 (±5) days postpartum to first ovulation (detection of a CL during a weekly ultrasonographic examination). Blood samples were collected just before and 2 hours (GnRH, LH, and control groups) or 18 hours (EB groups) after hormone or saline (control) administration. Ovulation occurred as early as 15 days postpartum in the GnRH group. The mean ± SEM intervals (days) from calving to first ovulation were EB, 87.7 ± 4.2; EB-CR, 20.3 ± 1.2; EB-SUPL, 60.3 ± 3.2; GnRH, 40.4 ± 2.1; GnRH-CR, 21.0 ± 1.1; GnRH-SUPL, 26.4 ± 1.1; LH, 35.6 ± 1.1; and control, 60.9 ± 2.1. We concluded that there was sufficient LH in the pituitary gland (of Nellore cows) from the second week postpartum to induce ovulation in response to exogenous GnRH. Additionally, calf removal and nutritional supplementation reduced, by 2 to 4 weeks, the interval from calving to an LH increase and ovulation induced by GnRH or EB. © 2013.
Resumo:
Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.