965 resultados para Transgene Expression Level
Resumo:
The molecular events that drive the initiation and progression of ovarian adenocarcinoma are not well defined. We have investigated changes in gene expression in ovarian cancer cell lines compared to an immortalized human ovarian surface epithelial cell line (HOSE) using a cDNA array. We identified 17 genes that were under-expressed and 10 genes that were over-expressed in the cell lines compared to the HOSE cells. One of the genes under-expressed in the ovarian cancer cell lines, Id3, a transcriptional inactivator, was selected for further investigation. Id3 mRNA was expressed at reduced levels in 6 out of 9 ovarian cancer cell lines compared to the HOSE cells while at the protein level, all 7 ovarian cancer cell lines examined expressed the Id3 protein at greatly reduced levels. Expression of Id3 mRNA was also examined in primary ovarian tumours and was found in only 12/38 (32%) cases. A search was conducted far mutations of Id3 in primary ovarian cancers using single stranded conformation polymorphism (SSCP) analysis. Only one nucleotide substitution, present also in the corresponding constitutional DNA, was found in 94 ovarian tumours. Furthermore no association was found between LOH at 1p36 and lack of expression of Id3. These data suggest that Id3 is not the target of LOH at 1p36. (C) 2001 Cancer Research Campaign.
Resumo:
Transient gene expression assays are often used to screen promoters before stable transformation. Current transient quantification methods have several problems, including a lack of reporter gene stability and expense. Here we report a synthetic, codon-optimised xylanase gene (sXynA) as a reporter gene for quantitative transient analyses in plants. Azurine-crosslinked xylan (AZCL-xylan) was used as a substrate for assaying xylanase activity. The enzymatic nature of the protein allows for sensitive assays at the low levels of transgene protein found in transiently transformed tissue extracts. The xylanase (XYN) protein is stable, activity slopes are linear over long time periods and assays are cost-effective. Coupled with the GUSPlus reporter gene, the XYN reporter allows sensitive and accurate quantification of gene control sequences in transient expression systems.
Resumo:
We have studied the expression of the green fluorescent protein (GFP) gene to gain more understanding of the effects of additional nucleotide triplets (codons) downstream from the initiation codon on the translation of the GFP mRNA in CHO and Cos1 cells. A leader sequence of six consecutive identical codons (GUG, CUC, AGU or UCA) was introduced into a humanized GFP (hm gfp) gene downstream from the AUG to produce four GFP gene variants. Northern blot and RT-PCR analysis indicated that mRNA transcription from the GFP gene was not significantly affected by any of the additional sequences. However, immunoblotting and FACS analysis revealed that AGU and UCA GFP variants produced GFP at a mean level per cell 3.5-fold higher than the other two GFP variants and the hm gfp gene. [35S]-Methionine labeling and immunoprecipitation demonstrate that GFP synthesis was very active in UCA variant transfected-cells, but not in GUG variant and hm gfp transfected-cells. Moreover, proteasome inhibitor MG-132 treatment indicated that the GFPs encoded by each of the GFP variants and the hm gfp were equally stable, and this together with the comparable mRNA levels observed for each construct suggested that the different steady-state GFP concentrations observed reflected different translation efficiencies of the various GFP genes. In addition, the CUC GFP variant, when transiently transfected into CHO or COS-1 cells, did not produce any GFP expressing cells (fully green cells), and the GUG variant produced GFP expressing cells less than 10%, while AGU and UCA GFP variants up to 30–35% in a time course study from 8 to 36 h posttransfection. Analysis of the potential secondary structure of the GFP variant mRNAs especially in the translation initiation region suggested that the secondary structure of the GFP mRNAs was unlikely to explain the different translation efficiencies of the GFP variants. The present findings indicate that a change of the initiation context of the GFP gene by addition of extra coding sequence can alter the translation efficiency of GFP mRNA, providing a means of more efficient expression of GFP in eukaryotic cells.
Resumo:
The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.
Resumo:
It has been reported that Neisseria gonorrhoeae possesses a very high level of catalase activity, but the regulation of catalase expression has not been investigated extensively. In Escherichia coli and Salmonella enterica serovar Typhimurium, it has been demonstrated that OxyR is a positive regulator of hydrogen peroxide-inducible genes, including the gene encoding catalase. The oxyR gene from N. gonorrhoeae was cloned and used to complement an E. coli oxyR mutant, confirming its identity and function. The gene was inactivated by inserting a kanamycin resistance cassette and used to make a knockout allele on the chromosome of N. gonorrhoeae strain 1291. In contrast to E. coli, the N. gonorrhoeae oxyR::kan mutant expressed ninefold-more catalase activity and was more resistant to hydrogen peroxide killing than the wild type. These data are consistent with OxyR in N. gonorrhoeae acting as a repressor of catalase expression.
Resumo:
Acetylcholine (ACh) has been shown to exert an anti-inflammatory function by down-modulating the expression of pro-inflammatory cytokines. Its availability can be regulated at different levels, namely at its synthesis and degradation steps. Accordingly, the expression of acetylcholinesterase (AChE), the enzyme responsible for ACh hydrolysis, has been observed to be modulated in inflammation. To further address the mechanisms underlying this effect, we aimed here at characterizing AChE expression in distinct cellular types pivotal to the inflammatory response. This study was performed in the human acute leukaemia monocytyc cell line, THP-1, in human monocyte-derived primary macrophages and in human umbilical cord vein endothelial cells (HUVEC). In order to subject these cells to inflammatory conditions, THP-1 and macrophage were treated with lipopolysaccharide (LPS) from E.coli and HUVEC were stimulated with the tumour necrosis factor α (TNF-α). Our results showed that although AChE expression was generally up-regulated at the mRNA level under inflammatory conditions, distinct AChE protein expression profiles were aurprisingly observed among the distinct cellular types studied. Altogether, these results argue for the existence of cell specific mechanisms that regulate the expression of acetylcholinesterase in inflammation.
Resumo:
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.
Resumo:
Histone variants seem to play a major role in gene expression regulation. In prostate cancer, H2A.Z and its acetylated form are implicated in oncogenes’ upregulation. SIRT1, which may act either as tumor suppressor or oncogene, reduces H2A.Z levels in cardiomyocytes, via proteasome-mediated degradation, and this mechanism might be impaired in prostate cancer cells due to sirtuin 1 downregulation. Thus, we aimed to characterize the mechanisms underlying H2A.Z and SIRT1 deregulation in prostate carcinogenesis and how they interact. We found that H2AFZ and SIRT1 were up- and downregulated, respectively, at transcript level in primary prostate cancer and high-grade prostatic intraepithelial neoplasia compared to normal prostatic tissues. Induced SIRT1 overexpression in prostate cancer cell lines resulted in almost complete absence of H2A.Z. Inhibition of mTOR had a modest effect on H2A.Z levels, but proteasome inhibition prevented the marked reduction of H2A.Z due to sirtuin 1 overexpression. Prostate cancer cells exposed to epigenetic modifying drugs trichostatin A, alone or combined with 5-aza-2’-deoxycytidine, increased H2AFZ transcript, although with a concomitant decrease in protein levels. Conversely, SIRT1 transcript and protein levels increased after exposure. ChIP revealed an increase of activation marks within the TSS region for both genes. Remarkably, inhibition of sirtuin 1 with nicotinamide, increased H2A.Z levels, whereas activation of sirtuin 1 by resveratrol led to an abrupt decrease in H2A.Z. Finally, protein-ligation assay showed that exposure to epigenetic modifying drugs fostered the interaction between sirtuin 1 and H2A.Z. We concluded that sirtuin 1 and H2A.Z deregulation in prostate cancer are reciprocally related. Epigenetic mechanisms, mostly histone post-translational modifications, are likely involved and impair sirtuin 1-mediated downregulation of H2A.Z via proteasome-mediated degradation. Epigenetic modifying drugs in conjunction with enzymatic modulators are able to restore the normal functions of sirtuin 1 and might constitute relevant tools for targeted therapy of prostate cancer patients
Resumo:
Microbiology, 154
Resumo:
Dissertation presented to obtain a Ph.D. degree in Sciences of Engineering and Technology, Cell Technology, at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
RESUMO: Os Staphylococcus aureus resistentes à meticilina (MRSA, do inglês “methicillin-resistant Staphylococcus aureus”) são um dos principais agentes responsáveis por infeções hospitalares. Os MRSA são resistentes a praticamente todos os antibióticos β-lactâmicos devido a dois mecanismos principais: produção de β-lactamase (bla), codificada pelo gene blaZ, e produção de uma proteína de ligação à penicilina (PBP2a, do inglês “penicillin binding protein 2”), codificada pelo gene mecA. Estes dois genes são regulados por sistemas homólogos, constituídos por um sensor-transdutor (BlaR1 e MecR1) e um repressor (BlaI e MecI), de tal modo que ambos os sistemas são capazes de co-regular os genes mecA e blaZ, embora com eficiências de indução muito diferentes. De facto, a indução mediada pelo sistema mecI-mecR1 é tão lenta que se acredita que este sistema não está funcional na maioria das estirpes MRSA. No entanto, dados recentes do nosso laboratório, demonstram a ausência de relação entre a presença do gene mecI e o nível de resistência à meticilina em estirpes MRSA epidémicas, e também que, o fenótipo de resistência da grande maioria das estirpes não é perturbado pela sobre-expressão em trans do repressor mecI. Curiosamente, as duas estirpes em que a expressão da resistência foi afetada pela sobre-expressão do mecI são negativas para o locus da β-lactamase, o que sugere que este locus pode interferir diretamente com a repressão do gene mecA mediada pelo MecI. Nesta tese de mestrado esta hipótese foi explorada usando estratégias de biologia molecular e ensaios fenotípicos da resistência aos -lactâmicos. Os resultados obtidos demonstram que a presença do plasmídeo nativo da β-lactamase não só anula a repressão mediada pelo MecI, como também aumenta o nível de resistência das estirpes parentais. Várias hipóteses foram então formuladas para explicar estas observações. Dados preliminares, em conjunto com evidências experimentais publicadas, sugerem que o BlaI forma hetero-dímeros com o MecI que, após a indução, são inativados eficientemente pelo BlaR1. Em conclusão, estes resultados apresentam novas perspetivas para o mecanismo de regulação do mecA e para uma nova importante função do operão da β-lactamase para o fenótipo das estirpes MRSA.-------------------ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial pathogen and is also emerging in the community. MRSA is cross-resistant to virtually all β-lactam antibiotics and has acquired two main resistance mechanisms: production of β-lactamase (bla), coded by blaZ, and production of penicillin binding protein 2a (PBP2a), coded by mecA. Both genes are regulated by homologous sensor-transducers (BlaR1 and MecR1) and repressors (BlaI and MecI), and coregulation of mecA and blaZ by both systems has been demonstrated, although with remarkable different efficiencies. In fact, induction of mecA by mecI-mecR1 is so slow that it is believed it is not functional in most MRSA strains. However, recent data from our laboratory has unexpectedly demonstrated that not only there is no correlation between the presence of mecI gene and the resistance level in epidemic MRSA strains, but also that for most strains there were no significant changes on the resistance phenotype upon the mecI overexpression in trans. Interestingly, the two strains in which mecI overexpression affected the resistance expression were negative for the bla locus, suggesting that this locus may interfere directly with the MecI-mediated repression of mecA and account for those puzzling observations. In this master thesis we have explored this hypothesis using molecular biology strategies and phenotypic analysis of -lactam resistance. The data obtained demonstrate that the presence of a wild-type plasmid containing the bla locus not only disrupts the MecImediated repression, but also significantly enhances the expression of resistance. Several preliminary hypotheses were formulated to explain these observations and preliminary data, together with published evidence, support the working model that BlaI forms functional hetero-dimers with MecI, which upon induction are readily inactivated by BlaR1. These results provide new insights into the regulatory mechanism(s) of mecA and open new perspectives for the role of β-lactamase operon in the MRSA phenotype.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertation presented to obtain the Master Degree in Molecular, Genetics and Biomedicine
Resumo:
Background: Gender can influence post-infarction cardiac remodeling. Objective: To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Methods: Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. Results: MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Conclusions: Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function.