835 resultados para Transcatheter aortic valve replacement
Resumo:
Objective: To assess the effect of intestinal manipulation and mesenteric traction on gastro-intestinal function and postoperative recovery in patients undergoing abdominal aortic aneurysm (AAA) repair. Methods: Thirty-five patients undergoing AAA repair were randomised into 3 groups. Group I (n = II) had repair via retroperitoneal approach while Group II (n = 12) and Group III (n = 12) were repaired via transperitoneal approach with bowel packed within the peritoneal cavity or exteriorised in a bowel bag respectively. Gastric emptying was measured pre-operatively (day 0), day 1 and day 3 using paracetamol absorption test (PAT) and area under curve (P-AUC) was calculated. Intestinal permeability was measured using the Lactulose-Mannitol test. Results: Aneurysm size, operation time and PAT (on day 0 and day 3) were similar in the three groups. On day 1, the P-AUC was significantly higher in Group I, when compared with Group II and Group III (P = .02). Resumption of diet was also significantly earlier in Group I as compared to Group II and Group III. The intestinal permeability was significantly increased in Group II and Group III at day 1 when compared with day 0, with no significant increase in Group I. Retroperitoneal repair was also associated with significantly shorter intensive care unit (P = .04) and hospital stay (P = .047), when compared with the combined transperitoneal repair group (Group II and III). Conclusion: Retroperitoneal AAA repair minimises intestinal dysfunction and may lead to quicker patient recovery when compared to transperitoneal repair.
Evaluation of an operator independent bone cement vacuum mixing system for joint replacement surgery
Wear paths produced by individual hip-replacement patients— A large-scale, long-term follow-up study
Resumo:
Wear particle accumulation is one of the main contributors to osteolysis and implant failure in hip replacements. Altered kinematics produce significant differences in wear rates of hip replacements in simulator studies due to varying degrees of multidirectional motion. Gait analysis data from 153 hip-replacement patients 10-years post-operation were used to model two- and three-dimensional wear paths for each patient. Wear paths were quantified in two dimensions using aspect ratios and in three dimensions using the surface areas of the wear paths, with wear-path surface area correlating poorly with aspect ratio. The average aspect ratio of the patients wear paths was 3.97 (standard deviation ¼ 1.38), ranging from 2.13 to 10.86. Sixty percent of patients displayed aspect ratios between 2.50 and 3.99. However, 13% of patients displayed wear paths with aspect ratios 45.5, which indicates reduced multidirectional motion. The majority of total hip replacement (THR) patients display gait kinematics which produce multidirectional wear paths, but a significant minority display more linear paths.
The influence of wear paths produced by hip replacement patients during normal walking on wear rates
Resumo:
Variation in wear paths is known to greatly affect wear rates in vitro, with multidirectional paths producing much greater wear than unidirectional paths. This study investigated the relationship between multidirectional motion at the hip joint, as measured by aspect ratio, sliding distance, and wear rate for 164 hip replacements. Kinematic input from three-dimensional gait analysis was used to determine the wear paths. Activity cycles were determined for a subgroup of 100 patients using a pedometer study, and the relationship between annual sliding distance and wear rate was analyzed. Poor correlations were found between both aspect ratio and sliding distance and wear rate for the larger group and between annual sliding distance and wear rate for the subgroup. However, patients who experienced a wear rate <0.08 mm/year showed a strong positive correlation between the combination of sliding distance, activity levels, and aspect ratio and wear rate (adjusted r2?=?55.4%). This group may represent those patients who experience conditions that most closely match those that prevail in simulator and laboratory tests. Although the shape of wear paths, their sliding distance, and the number of articulation cycles at the hip joint affect wear rates in simulator studies, this relationship was not seen in this clinical study. Other factors such as lubrication, loading conditions and roughness of the femoral head may influence the wear rate.
Resumo:
The effects of polyunsaturated n-6 linoleic acid on monocyte-endothelial interactions were investigated with particular emphasis on the expression of platelet/endothelial cell adhesion molecule (PECAM)-1 and the role of protein kinase C (PKC) and cyclooxygenase-2 (COX-2). As a diet rich in polyunsaturated fatty acids may favour atherosclerosis in hyperglycaemia, this study was performed in both normal and high-glucose media using human aortic endothelial cells (HAEC). The HAEC were preincubated with normal (5 mM) or high (25 mM) d-glucose for 3 days before addition of fatty acids (0.2 mM) for 3 days. Linoleic acid enhanced PECAM-1 expression independently of tumor necrosis factor (TNF)-a and significantly increased TNF-a-induced monocyte adhesion to HAEC in comparison to the monounsaturated n-9 oleic acid. Chronic glucose treatment (25 mM, 6 days) did not modify the TNF-a-induced or fatty acid-induced changes in monocyte binding. The increase in monocyte binding was accompanied by a significant increase in E-selectin and vascular cell adhesion molecule (VCAM)-1 expression and could be abrogated by an interleukin (IL)-8 neutralising antibody and by the PKC and COX inhibitors. Inhibition of PKC-d reduced VCAM-1 expression regardless of experimental condition and was accompanied by a significant decrease in monocyte binding. Conditioned medium from linoleic acid-treated HAEC grown in normal glucose conditions significantly increased THP-1 chemotaxis. These results suggest that linoleic acid-induced changes in monocyte chemotaxis and subsequent binding are not solely mediated by changes in adhesion molecule expression but may be due to secreted factors such as IL-8, monocyte chemoattractant protein-1 or prostaglandins (PGs) such as PGE2, as IL-8 neutralisation and COX-2 inhibition reduced monocyte binding without changes in adhesion molecule expression.
Resumo:
AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.
METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.
RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.
CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.