814 resultados para Toowoomba Floods
Resumo:
Over the last decades the impact of natural disasters to the global environment is becoming more and more severe. The number of disasters has dramatically increased, as well as the cost to the global economy and the number of people affected. Among the natural disaster, flood catastrophes are considered to be the most costly, devastating, broad extent and frequent, because of the tremendous fatalities, injuries, property damage, economic and social disruption they cause to the humankind. In the last thirty years, the World has suffered from severe flooding and the huge impact of floods has caused hundreds of thousands of deaths, destruction of infrastructures, disruption of economic activity and the loss of property for worth billions of dollars. In this context, satellite remote sensing, along with Geographic Information Systems (GIS), has become a key tool in flood risk management analysis. Remote sensing for supporting various aspects of flood risk management was investigated in the present thesis. In particular, the research focused on the use of satellite images for flood mapping and monitoring, damage assessment and risk assessment. The contribution of satellite remote sensing for the delineation of flood prone zones, the identification of damaged areas and the development of hazard maps was explored referring to selected cases of study.
Resumo:
The Bora wind is a mesoscale phenomenon which typically affects the Adriatic Sea basin for several days each year, especially during winter. The Bora wind has been studied for its intense outbreak across the Dinaric Alps. The properties of the Bora wind are widely discussed in the literature and scientific papers usually focus on the eastern Adriatic coast where strong turbulence and severe gust intensity are more pronounced. However, the impact of the Bora wind can be significant also over Italy, not only in terms of wind speed instensity. Depending on the synoptic pressure pattern (cyclonic or anticyclonic Bora) and on the season, heavy snowfall, severe storms, storm surges and floods can occur along the Adriatic coast and on the windward flanks of the Apennines. In the present work five Bora cases that occurred in recent years have been selected and their evolution has been simulated with the BOLAM-MOLOCH model set, developed at ISAC-CNR in Bologna. Each case study has been addressed by a control run and by several sensitivity tests, performed with the purpose of better understanding the role played by air-sea latent and sensible heat fluxes. The tests show that the removal of the fluxes induces modifications in the wind approching the coast and a decrease of the total precipitation amount predicted over Italy. In order to assess the role of heat fluxes, further analysis has been carried out: column integrated water vapour fluxes have been computed along the Italian coastline and an atmospheric water balance has been evaluated inside a box volume over the Adriatic Sea. The balance computation shows that, although latent heat flux produces a significant impact on the precipitation field, its contribution to the balance is relatively minor. The most significant and lasting case study, that of February 2012, has been studied in more detail in order to explain the impressive drop in the total precipitation amount simulated in the sensitivity tests with removed heat fluxes with respect to the CNTRL run. In these experiments relative humidity and potential temperature distribution over different cross-sections have been examined. With respect to the CNTRL run a drier and more stable boundary layer, characterised by a more pronounced wind shear at the lower levels, has been observed to establish above the Adriatic Sea. Finally, in order to demonstrate that also the interaction of the Bora flow with the Apennines plays a crucial role, sensitivity tests varying the orography height have been considered. The results of such sensitivity tests indicate that the propagation of the Bora wind over the Adriatic Sea, and in turn its meteorological impact over Italy, is influenced by both the large air-sea heat fluxes and the interaction with the Apennines that decelerate the upstream flow.
Resumo:
In order to fill existing knowledge gaps in the temporal and spatial distribution of soil erosion, its sources and causes, as well as in relation to its off-site impacts, erosion damage mapping of all visible erosion features was carried out at three study sites in Switzerland. The data illustrate that about one-quarter of the cultivated land was affected by water erosion. Observed mean annual soil loss rates are considered rather low (0.7–2.3 t/ha/y) compared to other European countries. However, substantial losses of >70 t/ha were recorded on individual plots. This paper focuses on the spatial aspects of soil erosion, by observing and comparing the study areas in a 1-year period from October 2005 to October 2006. The analyses illustrate that the sites differ considerably in average soil loss rates, but show similar patterns of off-site effects. In about one-third of the damaged plots an external source of surface runoff upslope contributed to the damage (run-on). Similarly, more than 50 per cent of the soil eroded on arable land deposited downslope on adjacent plots, roads, public/private infrastructure, etc., and 20 per cent of it reached open water bodies. Large amounts of eroded soil which deposit off-site, often related to slope depressions, are considered muddy floods and were frequently observed in Switzerland. Mapping, in conclusion, helps to sheds light on some of the important challenges of today, in particular: to comprehensively assess socioeconomic and ecological off-site effects of soil erosion, to attribute off-site impacts to on-site causes, and to raise awareness of all stakeholders involved, in order to improve ongoing discussions on policy formulation and implementation at the national and international levels.
Resumo:
In-stream structures including cross-vanes, J-hooks, rock vanes, and W-weirs are widely used in river restoration to limit bank erosion, prevent changes in channel gradient, and improve aquatic habitat. During this investigation, a rapid assessment protocol was combined with post-project monitoring data to assess factors influencing the performance of more than 558 in-stream structures and rootwads in North Carolina. Cross-sectional survey data examined for 221 cross sections from 26 sites showed that channel adjustments were highly variable from site to site, but approximately 60 % of the sites underwent at least a 20 % net change in channel capacity. Evaluation of in-stream structures ranging from 1 to 8 years in age showed that about half of the structures were impaired at 10 of the 26 sites. Major structural damage was often associated with floods of low to moderate frequency and magnitude. Failure mechanisms varied between sites and structure types, but included: (1) erosion of the channel bed and banks (outflanking); (2) movement of rock materials during floods; and (3) burial of the structures in the channel bed. Sites with reconstructed channels that exhibited large changes in channel capacity possessed the highest rates of structural impairment, suggesting that channel adjustments between structures led to their degradation of function. The data question whether currently used in-stream structures are capable of stabilizing reconfigured channels for even short periods when applied to dynamic rivers.
Resumo:
The influence of climate change on storm surges including increased mean sea level change and the associated insurable losses are assessed for the North Sea basin. In doing so, the newly developed approach couples a dynamical storm surge model with a loss model. The key element of the approach is the generation of a probabilistic storm surge event set. Together with parametrizations of the inland propagation and the coastal protection failure probability this enables the estimation of annual expected losses. The sensitivity to the parametrizations is rather weak except when the assumption of high level of increased mean sea level change is made. Applying this approach to future scenarios shows a substantial increase of insurable losses with respect to the present day. Superimposing different mean sea level changes shows a nonlinear behavior at the country level, as the future storm surge changes are higher for Germany and Denmark. Thus, the study exhibits the necessity to assess the socio-economic impacts of coastal floods by combining the expected sea level rise with storm surge projections.
Resumo:
Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.
Resumo:
Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L−1) but also to some extent decrease light availability in the trophic surface layer.
Resumo:
Efforts have been made to provide a scientific basis for using environmental services as a conceptual tool to enhance conservation and improve livelihoods in protected mountain areas (MtPAS). Little attention has been paid to participatory research or locals’ concerns as environmental service (ES) users and providers. Such perspectives can illuminate the complex interplay between mountain ecosystems, environmental services and the determinants of human well-being. Repeat photography, long used in geographical fieldwork, is new as a qualitative research tool. This study uses a novel application of repeat photography as a diachronic photo-diary to examine local perceptions of change in ES in Sagarmatha National Park. Results show a consensus among locals on adverse changes to ES, particularly protection against natural hazards, such as landslides and floods, in the UNESCO World Heritage Site. We argue that our methodology could complement biophysical ecosystem assessments in MtPAS, especially since assessing ES, and acting on that, requires integrating diverse stakeholders’ knowledge, recognizing power imbalances and grappling with complex social-ecological systems.
Resumo:
This thesis presents a paleoclimatic/paleoenvironmental study conducted on clastic cave sediments of the Moravian Karst, Czech Republic. The study is based on environmental magnetic techniques, yet a wide range of other scientific methods was used to obtain a clearer picture of the Quaternary climate. My thesis also presents an overview of the significance of cave deposits for paleoclimatic reconstructions, explains basic environmental magnetic techniques and offers background information on the study area – a famous karst region in Central Europe with a rich history. In Kulna Cave magnetic susceptibility variations and in particular variations in pedogenic susceptibility yield a detailed record of the palaeoenvironmental conditions during the Last Glacial Stage. The Kulna long-term climatic trends agree with the deep-sea SPECMAP record, while the short-term oscillations correlate with rapid changes in the North Atlantic sea surface temperatures. Kulna Cave sediments reflect the intensity of pedogenesis controlled by short-term warmer events and precipitation over the mid-continent and provide a link between continental European climate and sea surface temperatures in the North Atlantic during the Last Glacial Stage. Given the number of independent climate proxies determined from the entrance facies of the cave and their high resolution, Kulna is an extremely important site for studying Late Pleistocene climate. In the interior of Spiralka Cave, a five meter high section of fine grained sediments deposited during floods yields information on the climatic and environmental conditions of the last millenium. In the upper 1.5 meters of this profile, mineral magnetic and other non-magnetic data indicate that susceptibility variations are controlled by the concentration of magnetite and its magnetic grain size. Comparison of our susceptibility record to the instrumental record of winter temperature anomalies shows a remarkable correlation. This correlation is explained by coupling of the flooding events, cultivation of land and pedogenetic processes in the cave catchment area. A combination of mineral magnetic and geochemical proxies yields a detail picture of the rapidly evolving climate of the near past and tracks both natural and human induced environmental changes taking place in the broader region.
Resumo:
High resolution digital elevation models (DEMs) of Santiaguito and Pacaya volcanoes, Guatemala, were used to estimate volume changes and eruption rates between 1954 and 2001. The DEMs were generated from contour maps and aerial photography, which were analyzed in ArcGIS 9.0®. Because both volcanoes were growing substantially over the five decade period, they provide a good data set for exploring effective methodology for estimating volume changes. The analysis shows that the Santiaguito dome complex grew by 0.78 ± 0.07 km3 (0.52 ± 0.05 m3 s-1) over the 1954-2001 period with nearly all the growth occurring on the El Brujo (1958-75) and Caliente domes (1971-2001). Adding information from field data prior to 1954, the total volume extruded from Santiaguito since 1922 is estimated at 1.48 ± 0.19 km3. Santiaguito’s growth rate is lower than most other volcanic domes, but it has been sustained over a much longer period and has undergone a change toward more exogenous and progressively slower extrusion with time. At Santiaguito some of the material being added at the dome is subsequently transported downstream by block and ash flows, mudflows and floods, creating channel shifting and areas of aggradation and erosion. At Pacaya volcano a total volume of 0.21 ± 0.05 km3 was erupted between 1961 and 2001 for an average extrusion rate of 0.17 ± 0.04 m3 s-1. Both the Santiaguito and Pacaya eruption rate estimates reported here are minima, because they do not include estimates of materials which are transported downslope after eruption and data on ashfall which may result in significant volumes of material spread over broad areas. Regular analysis of high resolution DEMs using the methods outlined here, would help quantify the effects of fluvial changes to downstream populated areas, as well as assist in tracking hazards related to dome collapse and eruption.
Resumo:
In July and August 2010 floods of unprecedented impact afflicted Pakistan. The floods resulted from a series of intense multi-day precipitation events in July and early August. At the same time a series of blocking anticyclones dominated the upper-level flow over western Russia and breaking waves i.e. equatorward extrusions of stratospheric high potential vorticity (PV) air formed along the downstream flank of the blocks. Previous studies suggested that these extratropical upper-level breaking waves were crucial for instigating the precipitation events in Pakistan. Here a detailed analysis is provided of the extratropical forcing of the precipitation. Piecewise PV inversion is used to quantify the extratropical upper-level forcing associated with the wave breaking and trajectories are calculated to study the pathways and source regions of the moisture that precipitated over Pakistan. Limited-area model simulations are carried out to complement the Lagrangian analysis. The precipitation events over Pakistan resulted from a combination of favourable boundary conditions with strong extratropical and monsoonal forcing factors. Above-normal sea-surface temperatures in the Indian Ocean led to an elevated lower-tropospheric moisture content. Surface monsoonal depressions ensured the transport of moist air from the ocean towards northeastern Pakistan. Along this pathway the air parcel humidity increased substantially (60–90% of precipitated moisture) via evapotranspiration from the land surface. Extratropical breaking waves influenced the surface wind field substantially by enhancing the wind component directed towards the mountains which reinforced the precipitation.
Resumo:
ContentsTuition concernsGroup helps students budgetRiver recreation floods Iowa's economic fundsCrafty quilt inspires school spirit Ten books to build successCash Mob hits Ames to shop locallyBig 12 teams wrestle with change
Resumo:
The floods of 1993 caused the corn crop to be low in test weight. The following study was conducted to determine the relative feeding value of low test weight corn. The ability to feed this discounted corn to lambs could be a means of adding extra value to the discounted crop and lower the cost of lamb gain. Performance parameters indicated that low test weight corn was of equal value to normal test weight corn.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.