804 resultados para Todd, Doug
Resumo:
Numerous factors are associated with poverty and underdevelopment in Africa, including climate variability. Rainfall, and climate more generally, are implicated directly in the United Nations “Millennium Development Goals” to eradicate extreme poverty and hunger, and reduce child mortality and incidence of diseases such as malaria by the target date of 2015. But, Africa is not currently on target to meet these goals. We pose a number of questions from a climate science perspective aimed at understanding this background: Is there a common origin to factors that currently constrain climate science? Why is it that in a continent where human activity is so closely linked to interannual rainfall variability has climate science received little of the benefit that saw commercialization driving meteorology in the developed world? What might be suggested as an effective way for the continent to approach future climate variability and change? We make the case that a route to addressing the challenges of climate change in Africa rests with the improved management of climate variability. We start by discussing the constraints on climate science and how they might be overcome. We explain why the optimal management of activities directly influenced by interannual climate variability (which include the development of scientific capacity) has the potential to serve as a forerunner to engagement in the wider issue of climate change. We show this both from the perspective of the climate system and the institutions that engage with climate issues. We end with a thought experiment that tests the benefits of linking climate variability and climate change in the setting of smallholder farmers in Limpopo Province, South Africa.
Resumo:
An update of Owens et al. (2008) shows that the relationship between the coronal mass ejection (CME) rate and the heliospheric magnetic field strength predicts a field floor of less than 4 nT at 1 AU. This implies that the record low values measured during this solar minimum do not necessarily contradict the idea that open flux is conserved. The results are consistent with the hypothesis that CMEs add flux to the heliosphere and interchange reconnection between open flux and closed CME loops subtracts flux. An existing model embracing this hypothesis, however, overestimates flux during the current minimum, even though the CME rate has been low. The discrepancy calls for reasonable changes in model assumptions.
Resumo:
The double triangular test was introduced twenty years ago, and the purpose of this paper is to review applications that have been made since then. In fact, take-up of the method was rather slow until the late 1990s, but in recent years several clinical trial reports have been published describing its use in a wide range of therapeutic areas. The core of this paper is a detailed account of five trials that have been published since 2000 in which the method was applied to studies of pancreatic cancer, breast cancer, myocardial infarction, epilepsy and bedsores. Before those accounts are given, the method is described and the history behind its evolution is presented. The future potential of the method for sequential case-control and equivalence trials is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
In clinical trials, situations often arise where more than one response from each patient is of interest; and it is required that any decision to stop the study be based upon some or all of these measures simultaneously. Theory for the design of sequential experiments with simultaneous bivariate responses is described by Jennison and Turnbull (Jennison, C., Turnbull, B. W. (1993). Group sequential tests for bivariate response: interim analyses of clinical trials with both efficacy and safety endpoints. Biometrics 49:741-752) and Cook and Farewell (Cook, R. J., Farewell, V. T. (1994). Guidelines for monitoring efficacy and toxicity responses in clinical trials. Biometrics 50:1146-1152) in the context of one efficacy and one safety response. These expositions are in terms of normally distributed data with known covariance. The methods proposed require specification of the correlation, ρ between test statistics monitored as part of the sequential test. It can be difficult to quantify ρ and previous authors have suggested simply taking the lowest plausible value, as this will guarantee power. This paper begins with an illustration of the effect that inappropriate specification of ρ can have on the preservation of trial error rates. It is shown that both the type I error and the power can be adversely affected. As a possible solution to this problem, formulas are provided for the calculation of correlation from data collected as part of the trial. An adaptive approach is proposed and evaluated that makes use of these formulas and an example is provided to illustrate the method. Attention is restricted to the bivariate case for ease of computation, although the formulas derived are applicable in the general multivariate case.
Resumo:
A number of authors have proposed clinical trial designs involving the comparison of several experimental treatments with a control treatment in two or more stages. At the end of the first stage, the most promising experimental treatment is selected, and all other experimental treatments are dropped from the trial. Provided it is good enough, the selected experimental treatment is then compared with the control treatment in one or more subsequent stages. The analysis of data from such a trial is problematic because of the treatment selection and the possibility of stopping at interim analyses. These aspects lead to bias in the maximum-likelihood estimate of the advantage of the selected experimental treatment over the control and to inaccurate coverage for the associated confidence interval. In this paper, we evaluate the bias of the maximum-likelihood estimate and propose a bias-adjusted estimate. We also propose an approach to the construction of a confidence region for the vector of advantages of the experimental treatments over the control based on an ordering of the sample space. These regions are shown to have accurate coverage, although they are also shown to be necessarily unbounded. Confidence intervals for the advantage of the selected treatment are obtained from the confidence regions and are shown to have more accurate coverage than the standard confidence interval based upon the maximum-likelihood estimate and its asymptotic standard error.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
We consider the comparison of two formulations in terms of average bioequivalence using the 2 × 2 cross-over design. In a bioequivalence study, the primary outcome is a pharmacokinetic measure, such as the area under the plasma concentration by time curve, which is usually assumed to have a lognormal distribution. The criterion typically used for claiming bioequivalence is that the 90% confidence interval for the ratio of the means should lie within the interval (0.80, 1.25), or equivalently the 90% confidence interval for the differences in the means on the natural log scale should be within the interval (-0.2231, 0.2231). We compare the gold standard method for calculation of the sample size based on the non-central t distribution with those based on the central t and normal distributions. In practice, the differences between the various approaches are likely to be small. Further approximations to the power function are sometimes used to simplify the calculations. These approximations should be used with caution, because the sample size required for a desirable level of power might be under- or overestimated compared to the gold standard method. However, in some situations the approximate methods produce very similar sample sizes to the gold standard method. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
Background: The care of the acutely ill patient in hospital is often sub-optimal. Poor recognition of critical illness combined with a lack of knowledge, failure to appreciate the clinical urgency of a situation, a lack of supervision, failure to seek advice and poor communication have been identified as contributory factors. At present the training of medical students in these important skills is fragmented. The aim of this study was to use consensus techniques to identify the core competencies in the care of acutely ill or arrested adult patients that medical students should possess at the point of graduation. Design: Healthcare professionals were invited to contribute suggestions for competencies to a website as part of a modified Delphi survey. The competency proposals were grouped into themes and rated by a nominal group comprised of physicians, nurses and students from the UK. The nominal group rated the importance of each competency using a 5-point Likert scale. Results: A total of 359 healthcare professionals contributed 2,629 competency suggestions during the Delphi survey. These were reduced to 88 representative themes covering: airway and oxygenation; breathing and ventilation; circulation; confusion and coma; drugs, therapeutics and protocols; clinical examination; monitoring and investigations; team-working, organisation and communication; patient and societal needs; trauma; equipment; pre-hospital care; infection and inflammation. The nominal group identified 71 essential and 16 optional competencies which students should possess at the point of graduation. Conclusions: We propose these competencies form a core set for undergraduate training in resuscitation and acute care.
Resumo:
There is increasing interest in combining Phases II and III of clinical development into a single trial in which one of a small number of competing experimental treatments is ultimately selected and where a valid comparison is made between this treatment and the control treatment. Such a trial usually proceeds in stages, with the least promising experimental treatments dropped as soon as possible. In this paper we present a highly flexible design that uses adaptive group sequential methodology to monitor an order statistic. By using this approach, it is possible to design a trial which can have any number of stages, begins with any number of experimental treatments, and permits any number of these to continue at any stage. The test statistic used is based upon efficient scores, so the method can be easily applied to binary, ordinal, failure time, or normally distributed outcomes. The method is illustrated with an example, and simulations are conducted to investigate its type I error rate and power under a range of scenarios.
Resumo:
Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.
Resumo:
Background: In a prospective observational study, we examined the temporal relationships between serum erythropoietin (EPO) levels, haemoglobin concentration and the inflammatory response in critically ill patients with and without acute renal failure (ARF). Patients and method Twenty-five critically ill patients, from general and cardiac intensive care units (ICUs) in a university hospital, were studied. Eight had ARF and 17 had normal or mildly impaired renal function. The comparator group included 82 nonhospitalized patients with normal renal function and varying haemoglobin concentrations. In the patients, levels of haemoglobin, serum EPO, C-reactive protein, IL-1β, IL-6, serum iron, ferritin, vitamin B12 and folate were measured, and Coombs test was performed from ICU admission until discharge or death. Concurrent EPO and haemoglobin levels were measured in the comparator group. Results: EPO levels were initially high in patients with ARF, falling to normal or low levels by day 3. Thereafter, almost all ICU patients demonstrated normal or low EPO levels despite progressive anaemia. IL-6 exhibited a similar initial pattern, but levels remained elevated during the chronic phase of critical illness. IL-1β was undetectable. Critically ill patients could not be distinguished from nonhospitalized anaemic patients on the basis of EPO levels. Conclusion: EPO levels are markedly elevated in the initial phase of critical illness with ARF. In the chronic phase of critical illness, EPO levels are the same for patients with and those without ARF, and cannot be distinguished from noncritically ill patients with varying haemoglobin concentrations. Exogenous EPO therapy is unlikely to be effective in the first few days of critical illness.