954 resultados para Three-dimensional (3-d)
Resumo:
The unsteady laminar incompressible boundary-layer flow near the three-dimensional asymmetric stagnation point has been studied under the assumptions that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is found that in contrast with the symmetric flow, the maximum heat transfer occurs away from the stagnation point due to the decrease in the boundary-layer thickness. The effect of the variation of the wall temperature with time on heat transfer is strong. The skin friction and heat transfer due to asymmetric flow only are comparatively less affected by the mass transfer as compared to those of symmetric flow.
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
Background Several prospective studies have suggested that gait and plantar pressure abnormalities secondary to diabetic peripheral neuropathy contributes to foot ulceration. There are many different methods by which gait and plantar pressures are assessed and currently there is no agreed standardised approach. This study aimed to describe the methods and reproducibility of three-dimensional gait and plantar pressure assessments in a small subset of participants using pre-existing protocols. Methods Fourteen participants were conveniently sampled prior to a planned longitudinal study; four patients with diabetes and plantar foot ulcers, five patients with diabetes but no foot ulcers and five healthy controls. The repeatability of measuring key biomechanical data was assessed including the identification of 16 key anatomical landmarks, the measurement of seven leg dimensions, the processing of 22 three-dimensional gait parameters and the analysis of four different plantar pressures measures at 20 foot regions. Results The mean inter-observer differences were within the pre-defined acceptable level (<7 mm) for 100 % (16 of 16) of key anatomical landmarks measured for gait analysis. The intra-observer assessment concordance correlation coefficients were > 0.9 for 100 % (7 of 7) of leg dimensions. The coefficients of variations (CVs) were within the pre-defined acceptable level (<10 %) for 100 % (22 of 22) of gait parameters. The CVs were within the pre-defined acceptable level (<30 %) for 95 % (19 of 20) of the contact area measures, 85 % (17 of 20) of mean plantar pressures, 70 % (14 of 20) of pressure time integrals and 55 % (11 of 20) of maximum sensor plantar pressure measures. Conclusion Overall, the findings of this study suggest that important gait and plantar pressure measurements can be reliably acquired. Nearly all measures contributing to three-dimensional gait parameter assessments were within predefined acceptable limits. Most plantar pressure measurements were also within predefined acceptable limits; however, reproducibility was not as good for assessment of the maximum sensor pressure. To our knowledge, this is the first study to investigate the reproducibility of several biomechanical methods in a heterogeneous cohort.
Resumo:
Examples of 3D cadmium thiosulfate based inorganic-organic hybrid compounds have been shown to be active photocatalysts using sunlight.
Resumo:
- Background/Aims Liver sinusoidal endothelial cell (LSEC) fenestrae are membrane-bound pores that are grouped in sieve plates and act as a bidirectional guardian in regulating transendothelial liver transport. The high permeability of the endothelial lining is explained by the presence of fenestrae and by various membrane-bound transport vesicles. The question as to whether fenestrae relate to other transport compartments remains unclear and has been debated since their discovery almost 40 years ago. - Methods In this study, novel insights concerning the three-dimensional (3D) organization of the fenestrated cytoplasm were built on transmission electron tomographical observations on isolated and cultured whole-mount LSECs. Classical transmission electron microscopy and atomic force microscopy imaging was performed to accumulate cross-correlative structural evidence. - Results and Conclusions The data presented here indicate that different arrangements of fenestrae have to be considered: i.e. open fenestrae that lack any structural obstruction mainly located in the thin peripheral cytoplasm and complexes of multifolded fenestrae organized as labyrinth-like structures that are found in the proximity of the perinuclear area. Fenestrae in labyrinths constitute about one-third of the total LSEC porosity. The 3D reconstructions also revealed that coated pits and small membrane-bound vesicles are exclusively interspersed in the non-fenestrated cytoplasmic arms.
Resumo:
Hydrothermal reactions between uranium salts and arsenic pentoxide in the presence of two different amines yielded six new uranium arsenate phases exhibiting open-framework structures, ethylenediamine (en): [C2N2H9]-[(UO2)(ASO(4))] I; [C2N2H10][(UO2)F(HASO(4))]2 center dot 4H(2)O, II; [C2N2H9][U2F5(HASO(4))(2)], III; [C2N2H9][UF2(ASO(4))], IV; diethylenetriamine (DETA), [C4N3H16][U2F3(ASO(4))(2)(HAsO4)] V; and [C4N3H16][U2F6(AsO4)(HAsO4)], VI. The structures were determined using single crystal studies, which revealed two- (I, II, V) and three-dimensional (III, IV, VI) structures for the uranium arsenates. The uranium atom, in these compounds, exhibits considerable variations in the coordination (6 to 9) that appears to have some correlation with the synthetic conditions. The water molecules in [C2N2H10][(UO2)F(HAsO4)](2 center dot)4H(2)O, II, could be reversibly removed, and the dehydrated phase, [C2N2H10][(UO2)F(HAsO4)](2), IIa, was also characterized using single crystal studies. The observation of many mineralogical structures in the present compounds suggests that the hydrothermal method could successfully replicate the geothermal conditions. As part of this study, we have observed autunite, Ca[(UO2)(PO4)](2)(H2O)(11), metavauxite, [Fe(H2O)(6)][Al(OH)(H2O)(PO4)](2), finarite, PbCU(SO4)(OH)(2), and tancoite, LiNa2H[Al(PO4)(2)(OH)], structures. The repeated observation of the secondary building unit, SBU-4, in many of the uranium arsenate structures suggests that these are viable building units. Optical studies on the uranium arsenate compound, [C4N3H16][U2F6(AsO4)(HASO(4))), VI, containing uranium in the +4 oxidation state indicates a blue emission through an upconversion process. The compound also exhibits antiferromagnetic behavior.
Resumo:
The conformationally restricted CHO-L-Met-Xxx-L-Phe-OY (where Xxx = Aib, Ac3c, Ac5c, Ac6c, and Ac7c; Y = H, Me) tripeptides, analogs of the chemoattractant CHO-L-Met-L-Leu-L-Phe-OH, have been synthesized in solution by classical methods and fully characterized. Compounds were compared to determine the combined effect of backbone conformational preferences and side-chain bulkiness on the relation of three-dimensional structure to biological activity. Each peptide was tested for its ability to induce granule enzyme secretion from rabbit peritoneal polymorphonuclear leukocytes. In parallel, a conformational analysis on the CHO-blocked peptide and their tertbutyloxycarbonylated synthetic precursors was performed in the crystal state and in solution using X-ray diffraction, infrared absorption, and 1H nuclear magnetic resonance. The biological and conformational data are discussed in relation to the proposed model of the chemotactic peptide receptor of rabbit neutrophils.
Resumo:
A three dimensional elasticity solution for the analysis of beams continuous over an infinite number of equally spaced supports has been given. The beam has been subjected to normal tractions on its two opposite faces and these loads are identical over each span. The other two faces are traction free. Numerical results have been given for different cases when the beam is loaded on its bottom face. The results obtained have been compared with the results of two dimensional elasticity solution.
Resumo:
A general three-dimensional solution is presented for statics and dynamics of plates, homogeneous or laminated, of orthotropic materials. The solution is in series form. Using parts of the general solution a variety of problems, especially of rectangular configurations, can be solved. As Mindlin's approximate analysis for vibration of thick plates is often adequate for specific practical purposes, a general solution for Mindlin's analysis is also given.
Resumo:
The effects of power-law plasticity (yield strength and strain hardening exponent) on the plastic strain distribution underneath a Vickers indenter was systematically investigated by recourse to three-dimensional finite element analysis, motivated by the experimental macro-and micro-indentation on heat-treated Al-Zn-Mg alloy. For meaningful comparison between simulated and experimental results, the experimental heat treatment was carefully designed such that Al alloy achieve similar yield strength with different strain hardening exponent, and vice versa. On the other hand, full 3D simulation of Vickers indentation was conducted to capture subsurface strain distribution. Subtle differences and similarities were discussed based on the strain field shape, size and magnitude for the isolated effect of yield strength and strain hardening exponent.
Resumo:
Conventional three-dimensional isoparametric elements are susceptible to problems of locking when used to model plate/shell geometries or when the meshes are distorted etc. Hybrid elements that are based on a two-field variational formulation are immune to most of these problems, and hence can be used to efficiently model both "chunky" three-dimensional and plate/shell type structures. Thus, only one type of element can be used to model "all" types of structures, and also allows us to use a standard dual algorithm for carrying out the topology optimization of the structure. We also address the issue of manufacturability of the designs.
Resumo:
All the second-order boundary-layer effects on the unsteady laminar incompressible flow at the stagnation-point of a three-dimensional body for both nodal and saddle point regions have been studied. It has been assumed that the free-stream velocity, wall temperature and mass transfer vary arbitrarily with time. The effect of the Prandtl number has been taken into account. The partial differential equations governing the flow have been derived for the first time and then solved numerically unsteady free-stream velocity distributions, the nature of the using an implicit finite-difference scheme. It is found that the stagnation point and the mass transfer strongly affect the skin friction and heat transfer whereas the effects of the Prandtl number and the variation of the wall temperature with time are only on the heat transfer. The skin friction due to the combined effects of first- and second-order boundary layers is less than the skin friction due to, the first-order boundary layers whereas the heat transfer has the opposite behaviour. Suction increases the skin friction and heat transfer but injection does the opposite
Resumo:
The effect of surface mass transfer velocities having normal, principal and transverse direction components (�vectored� suction and injection) on the steady, laminar, compressible boundary layer at a three-dimensional stagnation point has been investigated both for nodal and saddle points of attachment. The similarity solutions of the boundary layer equations were obtained numerically by the method of parametric differentiation. The principal and transverse direction surface mass transfer velocities significantly affect the skin friction (both in the principal and transverse directions) and the heat transfer. Also the inadequacy of assuming a linear viscosity-temperature relation at low-wall temperatures is shown.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter ? which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when ? is small, whereas the effect of the dissipation parameter is more pronounced when ? is comparatively large.